Animal models of Long Covid: A hit-and-run disease
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) pandemic has caused more than 7 million deaths globally. Despite the presence of infection- and vaccine-induced immunity, SARS-CoV-2 infections remain a major global health concern because of the emergence of SARS-CoV-2 variants that can cause severe acute coronavirus disease 2019 (COVID-19) or enhance Long Covid disease phenotypes. About 5 to 10% of SARS-CoV-2-infected individuals develop Long Covid, which, similar to acute COVID 19, often affects the lung. However, Long Covid can also affect other peripheral organs, especially the brain. The causal relationships between acute disease phenotypes, long-term symptoms, and involvement of multiple organ systems remain elusive, and animal model systems mimicking both acute and post-acute phases are imperative. Here, we review the current state of Long Covid animal models, including current and possible future applications.
Sex differences and immune correlates of Long Covid development, symptom persistence, and resolution
Sex differences have been observed in acute coronavirus disease 2019 (COVID-19) and Long Covid (LC) outcomes, with greater disease severity and mortality during acute infection in males and greater proportions of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to LC pathogenesis. To investigate the immunologic underpinnings of LC development and symptom persistence, we performed multiomic analyses on blood samples obtained during acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 3 and 12 months after infection in a cohort of 45 participants who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Males who would later develop LC exhibited increases in transforming growth factor-β (TGF-β) signaling during acute infection, whereas females who would go on to develop LC had reduced expression. Females who developed LC demonstrated increased expression of , an RNA gene implicated in autoimmunity, during acute infection compared with females who recovered. Many immune features of LC were also conserved across sexes, such as alterations in monocyte phenotype and activation state. Nuclear factor κB (NF-κB) transcription factors were up-regulated in many cell types at acute and convalescent time points. Those with ongoing LC demonstrated reduced expression across lymphocyte subsets and elevated intracellular IL-4 in T cell subsets, suggesting that alterations may drive aberrantly elevated T helper cell 2-like responses in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Sex differences in postacute infection syndromes
Postacute infection syndromes like Long Covid disproportionately affect females, differing in prevalence, symptoms, and potential causes from males. This Viewpoint highlights these sex differences, gaps in current understanding, and the critical need for sex-based research.
Symptoms after Lyme disease: What's past is prologue
Protracted fatigue and other symptoms can occur after Lyme disease and other infections, with numerous possible drivers. Studies on posttreatment Lyme disease have been inconclusive, with no confirmed biomarker emerging. Prolonged antibiotic therapy provides no benefit. Thus, a holistic approach toward understanding and treating this complex disease is necessary.
The mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice
Age is the greatest risk factor for many neurodegenerative diseases, yet immune system aging, a contributor to neurodegeneration, is understudied. Genetic variation in the gene affects risk for both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein is implicated in peripheral immune cell signaling, but the effects of an aging immune system on LRRK2 function remain unclear. We analyzed peritoneal macrophages from knock-in mice and observed a biphasic, age-dependent effect of the mutation on peritoneal macrophage function. We report increases in antigen presentation, anti-inflammatory cytokine production, lysosomal activity, and pathogen uptake in peritoneal macrophages from young (2- to 3-month-old) female mice. Conversely, macrophages from aged (18- to 21-month-old) female mice exhibited decreased antigen presentation after inflammatory insult, decreased lysosomal function, and pathogen uptake, with a concomitant increase in DNA fragmentation in the presence of pathogens. This immune cell exhaustion phenotype was not observed in male mice and was driven by increased LRRK2 protein kinase activity. This phenotype was also observed in human peripheral myeloid cells, with monocyte-derived macrophages from patients with PD who had either the or mutation exhibiting decreased pathogen uptake and increased PDL1 expression, consistent with immune cell exhaustion. Our findings that LRRK2 mutations conferred an immunological advantage at a young age but could predispose the carrier to age-acquired immune cell exhaustion have implications for the therapeutic development of LRRK2 inhibitors.
Erratum for the Research Article "An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer's disease" by A. Ghosh
Delayed low-dose oral administration of 4'-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease
Development of broad-spectrum antiviral therapies is critical for outbreak and pandemic preparedness against emerging and reemerging viruses. Viruses inducing hemorrhagic fevers cause high morbidity and mortality in humans and are associated with several recent international outbreaks, but approved therapies for treating most of these pathogens are lacking. Here, we show that 4'-fluorouridine (4'-FlU; EIDD-2749), an orally available ribonucleoside analog, has antiviral activity against multiple hemorrhagic fever viruses in cell culture, including Nipah virus, Crimean-Congo hemorrhagic fever virus, orthohantaviruses, and arenaviruses. We performed preclinical in vivo evaluation of oral 4'-FlU against two arenaviruses, Old World Lassa virus (LASV) and New World Junín virus (JUNV), in guinea pig models of lethal disease. 4'-FlU demonstrated both advantageous pharmacokinetic characteristics and high efficacy in both of these lethal disease guinea pig models. Additional experiments supported protection of the infected animals even when 4'-FlU delivery was reduced to a low dose of 0.5 milligram per kilogram. To demonstrate clinical utility, 4'-FlU treatment was evaluated when initiated late in the course of infection (12 or 9 days after infection for LASV and JUNV, respectively). Delayed treatment resulted in rapid resolution of clinical signs, demonstrating an extended window for therapeutic intervention. These data support the use of 4'-FlU as a potent and efficacious treatment against highly pathogenic arenaviruses of public health concern with a virus inhibition profile suggesting broad-spectrum utility as an orally available antiviral drug against a wide variety of viral pathogens.
Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients
Spinocerebellar ataxia type 7 (SCA7) is a genetic neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. Purkinje cells (PCs) are central to the pathology of ataxias, but their low abundance in the cerebellum underrepresents their transcriptomes in sequencing assays. To address this issue, we developed a PC enrichment protocol and sequenced individual nuclei from mice and patients with SCA7. Single-nucleus RNA sequencing in SCA7-266Q mice revealed dysregulation of cell identity genes affecting glia and PCs. Specifically, genes marking zebrin-II PC subtypes accounted for the highest proportion of DEGs in symptomatic SCA7-266Q mice. These transcriptomic changes in SCA7-266Q mice were associated with increased numbers of inhibitory synapses as quantified by immunohistochemistry and reduced spiking of PCs in acute brain slices. Dysregulation of zebrin-II cell subtypes was the predominant signal in PCs of SCA7-266Q mice and was associated with the loss of zebrin-II striping in the cerebellum at motor symptom onset. We furthermore demonstrated zebrin-II stripe degradation in additional mouse models of polyglutamine ataxia and observed decreased zebrin-II expression in the cerebella of patients with SCA7. Our results suggest that a breakdown of zebrin subtype regulation is a shared pathological feature of polyglutamine ataxias.
Vagal stimulation ameliorates murine colitis by regulating SUMOylation
Inflammatory bowel diseases (IBDs) are chronic debilitating conditions without cure, the etiologies of which are unknown, that shorten the lifespans of 7 million patients worldwide by nearly 10%. Here, we found that decreased autonomic parasympathetic tone resulted in increased IBD susceptibility and mortality in mouse models of disease. Conversely, vagal stimulation restored neuromodulation and ameliorated colitis by inhibiting the posttranslational modification SUMOylation through a mechanism independent of the canonical interleukin-10/α7 nicotinic cholinergic vagal pathway. Colonic biopsies from patients with IBDs and mouse models showed an increase in small ubiquitin-like modifier (SUMO)2 and SUMO3 during active disease. In global genetic knockout mouse models, the deletion of protected against development of colitis and delayed onset of disease, whereas deletion of halted the progression of colitis. Bone marrow transplants from -knockout (KO) but not -KO mice into wild-type mice conferred protection against development of colitis. Electric stimulation of the cervical vagus nerve before the induction of colitis inhibited SUMOylation and delayed the onset of colitis in -KO mice and resulted in milder symptoms in -KO mice. Treatment with TAK-981, a first-in-class inhibitor of the SUMO-activating enzyme, ameliorated disease in three murine models of IBD and reduced intestinal permeability and bacterial translocation in a severe model of the disease, suggesting the potential to reduce progression to sepsis. These results reveal a pathway of vagal neuromodulation that reprograms endogenous stress-adaptive responses through inhibition of SUMOylation and suggest SUMOylation as a therapeutic target for IBD.
Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
NIT2 dampens BRD1 phase separation and restrains oxidative phosphorylation to enhance chemosensitivity in gastric cancer
5-Fluorouracil (5-FU) chemoresistance contributes to poor therapeutic response and prognosis of gastric cancer (GC), for which effective strategies to overcome chemoresistance are limited. Here, using a CRISPR-Cas9 system, we identified that nitrilase family member 2 (NIT2) reverses chemoresistance independent of its metabolic function. Depletion or low expression of NIT2 led to 5-FU resistance in GC cell lines, patient-derived organoids, and xenografted tumors. Mechanistically, NIT2 interacted with bromodomain-containing protein 1 (BRD1) to inhibit HBO1-mediated acetylation of histone H3 at lysine-14 (H3K14ac) and RELA-targeted oxidative phosphorylation (OXPHOS) gene expression. Upon 5-FU stimulation, NIT2 phosphorylation by Src at Y49 promoted the dissociation of NIT2 from BRD1, followed by binding to E3 ligase CCNB1IP1, causing autophagic degradation of NIT2. Consequently, reduced NIT2 protein resulted in BRD1 forming phase separation and binding to histone H3, as well as increased RELA stability due to suppression of inhibitor of growth family member 4-mediated RELA ubiquitination. In addition, NIT2 expression negatively correlated with H3K14ac and OXPHOS and positively correlated with the chemotherapeutic responses and prognosis of patients with GC. Our findings reveal the moonlighting function of NIT2 in chemoresistance and underscore that OXPHOS blockade by metformin enhances 5-FU chemosensitivity upon NIT2 loss.
Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells
Roundabout (ROBO) 1 and 2 are transmembrane receptors that bind secreted SLIT ligands through their extracellular domains (ECDs) and signal through their cytoplasmic domains to modulate the cytoskeleton and regulate cell migration, adhesion, and proliferation. SLIT-ROBO signaling regulates pathological ocular neovascularization, which is a major cause of vision loss worldwide, but pharmacological tools to prevent SLIT-ROBO signaling are lacking. Here, we developed human monoclonal antibodies (mAbs) against the ROBO1 and ROBO2 ECDs. One antibody that inhibited in vitro SLIT2 signaling through ROBO1 and ROBO2 (anti-ROBO1/2) also reduced ocular neovascularization in oxygen-induced retinopathy (OIR) and laser-induced corneal neovascularization (CNV) mouse models in vivo. Single-cell RNA sequencing of OIR retinas revealed that antibody treatment affected several cell types relevant to physiological and pathological angiogenesis, including endothelial cells, pericytes, and a heterogeneous population of myeloid cells. mAb treatment improved blood-retina barrier integrity and prevented pathological pericyte activation in OIR. SLIT-ROBO signaling inhibition prevented pathological activation of myeloid cells and increased neuroprotective myeloid populations normally seen in the developing retina. Microglia/infiltrating macrophage-specific ablation of and or knockout of the downstream effector phosphatidylinositol 3-kinase () encoding PI3Kγ in both OIR and CNV models phenocopied anti-ROBO1/2 treatment, further demonstrating the key role of myeloid cells as drivers of ocular neovascular diseases. ROBO1/2 blocking antibodies may thus provide a promising strategy to combat inflammation in blinding eye diseases.
Genipin rescues developmental and degenerative defects in familial dysautonomia models and accelerates axon regeneration
The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the world's population suffers from nerve degeneration or peripheral nerve damage. Despite this, there are major gaps in the knowledge of human PNS development and degeneration; therefore, there are no available treatments. Familial dysautonomia (FD) is a devastating disorder caused by a homozygous point mutation in the gene . FD specifically affects the development and causes degeneration of the PNS. We previously used patient-derived induced pluripotent stem cells (iPSCs) to show that peripheral sensory neurons (SNs) recapitulate the developmental and neurodegenerative defects observed in FD. Here, we conducted a chemical screen to identify compounds that rescue the SN differentiation inefficiency in FD. We identified that genipin restores neural crest and SN development in patient-derived iPSCs and in two mouse models of FD. Additionally, genipin prevented FD degeneration in SNs derived from patients with FD, suggesting that it could be used to ameliorate neurodegeneration. Moreover, genipin cross-linked the extracellular matrix (ECM), increased the stiffness of the ECM, reorganized the actin cytoskeleton, and promoted transcription of yes-associated protein-dependent genes. Last, genipin enhanced axon regeneration in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system) in in vitro axotomy models. Our results suggest that genipin has the potential to treat FD-related neurodevelopmental and neurodegenerative phenotypes and to enhance neuronal regeneration of healthy neurons after injury. Moreover, this suggests that the ECM can be targeted to treat FD.
Translating insights into therapies for Long Covid
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Initiating Long Covid RECOVERy
The NIH's RECOVER Initiative aims to ease the suffering of those living with Long Covid.
Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population
Nonalcoholic fatty liver disease (NAFLD) has become a common health care burden worldwide. The high heterogeneity of NAFLD remains elusive and impairs outcomes of clinical diagnosis and pharmacotherapy. Several NAFLD classifications have been proposed on the basis of clinical, genetic, alcoholic, or serum metabolic analyses. Yet, accurately predicting the progression of NAFLD to cirrhosis or hepatocellular carcinoma (HCC) in patients remains a challenge. Here, on the basis of a Chinese cohort of patients, we classified NAFLD into three distinct molecular subtypes (NAFLD-mSI, NAFLD-mSII, and NAFLD-mSIII) using integrative multiomics including whole-genome sequencing (WGS), proteomics, phosphoproteomics, lipidomics, and metabolomics across a broad range of liver, blood, and urine specimens. We found that NAFLD-mSI had higher expression of CYP1A2 and CYP3A4, which alleviate hepatic steatosis through mediating free fatty acid/bile acid-mTOR-FXR/PPARα signaling. NAFLD-mSII displayed an elevated risk of liver cirrhosis along with increased hepatic infiltration of M1 and M2 macrophages because of lipid-triggered hepatic CCL2 and CRP production. NAFLD-mSIII exhibited a potential risk for HCC development by increased transcription of CEBPB- and ERCC3-regulated oncogenes because of activation of the EGF-EGFR/CHKA/PI3K-PDK1-AKT cascade. Next, we validated the existence of these three NAFLD molecular subtypes in an external cohort comprising 92 patients with NAFLD across three different Chinese hospitals. These findings may aid in understanding the molecular features underlying NAFLD heterogeneity, thereby facilitating clinical diagnosis and treatment strategies with the aim of preventing the development of liver cirrhosis and HCC.
Consequences beyond acute SARS-CoV-2 infection in children
Although most children are spared from developing complications from SARS-CoV-2 infection, some may suffer consequences including Long Covid and multisystem inflammatory syndrome in children (MIS-C). Although the occurrence of these conditions has decreased over time, they can still occur, and recognition of symptoms and prompt diagnosis is imperative for early intervention.
Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19
Preexisting anti-interferon-α (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening COVID-19. However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to quantify and profile the isotypes of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and anti-IFN-α antibodies in longitudinal samples collected over 20 months from the airways and blood of 129 donors spanning mild to severe COVID-19. We found that nasal IgA1 anti-IFN-α autoantibodies were induced after infection onset in more than 70% of mild and moderate COVID-19 cases and were associated with robust anti-SARS-CoV-2 immunity, fewer symptoms, and efficient recovery. Nasal anti-IFN-α autoantibodies followed the peak of host IFN-α production and waned with disease recovery, revealing a regulated balance between IFN-α and anti-IFN-α response. In contrast, systemic IgG1 anti-IFN-α autoantibodies appeared later and were detected only in a subset of patients with elevated systemic inflammation and worsening symptoms. These data reveal a protective role for nasal anti-IFN-α in the immunopathology of COVID-19 and suggest that anti-IFN-α autoantibodies may serve a homeostatic function to regulate host IFN-α after viral infection in the respiratory mucosa.
Infection-associated chronic conditions: Why Long Covid is our best chance to untangle Osler's web
The recognition of Long Covid has renewed efforts to understand other infection-associated chronic conditions (IACCs). Here, we describe how studies of Long Covid and other IACCs might inform one another. We argue for the importance of a coordinated research agenda addressing these debilitating illnesses.
Monoclonal antibodies against the spike protein alter the endogenous humoral response to SARS-CoV-2 vaccination and infection
Increased use of antiviral monoclonal antibodies (mAbs) for treatment and prophylaxis necessitates better understanding of their impact on endogenous immunity to vaccines and viruses. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study immunity in individuals who received antiviral mAbs and were subsequently immunized with vaccines encoding the mAb-targeted viral spike antigen. Here, we describe the impact of administration of an antibody combination, casirivimab plus imdevimab (CAS+IMD), on immune responses to subsequent SARS-CoV-2 vaccination in humans, nonhuman primates, and mice. The presence of CAS+IMD at the time of vaccination led to a specific diminishment of vaccine-elicited pseudovirus neutralizing antibody titers without overall dampening of spike protein-directed immune responses, including antibody, B cell, and T cell responses. The impact on pseudovirus neutralizing titers extended to other therapeutic anti-spike protein antibodies when used as either monotherapy or combination therapy. The specific reduction in pseudovirus neutralizing titers was the result of epitope masking, a phenomenon where specific epitopes are bound by high-affinity antibodies and blocked from B cell recognition. Encouragingly, this reduction in pseudovirus neutralizing titers was reversible with additional booster vaccination. Moreover, by assessing the antiviral immune response in SARS-CoV-2-infected individuals treated therapeutically with CAS+IMD, we demonstrated alteration of antiviral humoral immunity in those who had received mAb therapy, but only in those individuals who had yet to start mounting their natural immune response at the time of mAb treatment. Together, these data demonstrate that antiviral mAbs can alter endogenous humoral immunity during vaccination or infection.
Erratum for the Research Article "Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice" by S. Gaikwad