Current and future therapies for small cell lung carcinoma
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation and high metastatic potential. It is characterized by universal inactivation of and RB1, overexpression of the MYC family and dysregulation of multiple oncogenic signaling pathways. Among different patients, SCLCs are similar at the genetic level but exhibit significant heterogeneity at the molecular level. The classification of SCLC has evolved from a simple neuroendocrine (NE)/non-neuroendocrine (non-NE) classification system to a transcription factor-based molecular subtype system; lineage plasticity adds further complexity and poses challenges for therapeutic development. While SCLC is initially sensitive to platinum-based chemotherapy, resistance develops rapidly, leading to a dismal prognosis. Various antibodies, including PD-1/PD-L1 inhibitors and antibody‒drug conjugates, have been introduced into clinical practice or are being evaluated in clinical trials. However, their therapeutic benefits for SCLC patients remain limited. This review summarizes SCLC carcinogenic mechanisms, tumor heterogeneity, and the immune microenvironment of SCLC, with a focus on recent advances in metastasis and resistance mechanisms. Additionally, the corresponding clinical progress in tackling these challenges is discussed.
C3G promotes bone marrow adipocyte expansion and hematopoietic regeneration after myeloablation by enhancing megakaryocyte niche function
C3G, a Rap1 GEF, promotes megakaryopoiesis and platelet function. Using transgenic and knock-out mouse models targeting C3G in megakaryocytes, we investigated whether C3G also affects the niche function of megakaryocytes during bone marrow (BM) recovery after myeloablation induced by 5-fluorouracil (5-FU), or total body irradiation (TBI) followed by bone marrow transplantation. C3G promoted megakaryocyte maturation and platelet production during recovery, along with increased white and red blood cell counts and enhanced survival of female mice after repeated doses of 5-FU. Additionally, megakaryocytes favored adipocyte differentiation through a C3G-mediated mechanism, likely involving Fgf1. Changes in the number or behavior of BM megakaryocytes and adipocytes influenced the hematopoietic stem cell pool, with C3G promoting its bias towards the myeloid-megakaryocytic lineage in both 5-FU- and TBI-ablated models. Therefore, C3G could be a potential target in therapies aimed at enhancing hematopoiesis in patients undergoing chemotherapy and/or BM transplantation.
Non-canonical small noncoding RNAs in the plasma extracellular vesicles as novel biomarkers in gastric cancer
Identifying robust diagnostic biomarkers for gastric cancer (GC) remains a significant challenge. Emerging studies highlight extracellular vesicle (EV)-derived RNAs in cancer biology, but the diagnostic potential of circulating EV-derived small non-coding RNAs (sncRNAs) in GC is poorly understood. Using panoramic RNA display by overcoming RNA modification aborted sequencing (PANDORA-seq), we mapped non-canonical sncRNAs-specifically ribosomal RNA-derived small RNAs (rsRNAs) and transfer RNA-derived small RNAs (tsRNAs)-in plasma EVs. We identified a three-rs/tsRNA signature that discriminates GC patients from healthy individuals with high sensitivity (80.42%) and specificity (87.43%) (143 GC vs 167 controls). For early-stage GC (stage I), sensitivity and specificity were 81.97% and 81.44%, respectively. Furthermore, the three-rs/tsRNA signature was evaluated in two independent cohorts, resulting in AUC values of 0.97 and 0.91 for distinguishing GC from healthy controls. Functional analyses revealed that these rs/tsRNAs regulate the ErbB/Hippo pathways, suggesting them in the underlying pathogenesis and therapeutic potential. This study establishes a novel EV-derived sncRNA signature for early GC detection.
Breakthroughs in treatment for hematological malignancies: latest updates on molecular glue, PROTACs and RNA degraders from ASH 2024
Degrader therapies have garnered significant attention for their innovative approach to targeting and eliminating malignancy-associated proteins, holding promise for improving outcomes for patients with relapsed or refractory (R/R) hematological malignancies, especially in cases of leukemia, non-Hodgkin lymphoma, and multiple myeloma. Currently, the main categories developed based on degraders include molecular glue (such as Cemsidomide, NX-5948), PROTACs (such as BGB-16673, AC-676, KT-333 ), and RNA degraders (such as SKY-1214). This correspondence summarizes the preclinical and clinical updates on degrader therapies presented at the ASH 2024 annual meeting.
Correction: Immunosenescence: a key player in cancer development
Disruption of the sorcin‒PAX5 protein‒protein interaction induces ferroptosis by promoting the FBXL12-mediated ubiquitination of ALDH1A1 in pancreatic cancer
Pancreatic cancer is one of the most malignant cancers, and limited therapeutic options are available. The induction of ferroptosis is considered to be a novel, promising strategy that has potential in cancer treatment, and ferroptosis inducers may be new options for eradicating malignant cancers that are resistant to traditional drugs. The exact mechanism underlying the function of sorcin in the initiation and progression of pancreatic cancer remains unclear.
Novel targeted therapies for immunoglobulin light chain amyloidosis: latest updates from the 2024 ASH annual meeting
Immunoglobulin light chain (AL) amyloidosis is an incurable disease caused by the accumulation and sedimentation of unstable free light chains produced by monoclonal plasma cells. The key to treatment is to achieve a deep hematologic remission in order to improve organ function or reverse organ dysfunction. Conventional treatment has not been able to fully meet the treatment needs of patients with AL, while therapies targeting malignant plasma cells or amyloid have potentially improved treatment outcomes. This study provides an overview of the latest reports on targeted therapies for AL amyloidosis from the 2024 ASH Annual Meeting.
Second primary malignancies following CAR T-cell therapy in patients with hematologic malignancies
Chimeric antigen receptor T-cell (CAR-T) therapy has transformed the management of patients with relapsed/refractory (R/R) hematologic malignancies, including B-cell lymphomas and multiple myeloma (MM). While data pertaining to the efficacy and toxicity associated with CAR-T have been widely reported, there are limited data on long-term complications. We retrospectively analyzed 246 patients treated with CAR-T for R/R B-cell lymphoma (n = 228) and MM (n = 18) at Ohio State University from 2016 to 2022, with a minimum of two years of follow-up. The median age was 66 years, and the median number of prior treatments was four. With a median follow-up of 38 months (range 11-66), 21 patients (8.5%) developed a second primary malignancy (SPM), with non-melanoma skin cancer being the most common (52%), followed by hematologic malignancies (33%) and non-skin solid tumors (14%). Squamous cell carcinoma accounted for 38% of skin cancers, while myelodysplastic syndrome and acute myeloid leukemia were the predominant hematologic malignancies. Solid tumors included bladder, prostate, and breast cancer. The distinct pattern of SPMs suggests potential CAR-T-related risks, warranting vigilant post-treatment surveillance. Further studies are necessary to elucidate underlying mechanism and predictive factors and guide long-term management of SPM risk in CAR-T survivors.
BCMA-targeted therapies for multiple myeloma: latest updates from 2024 ASH annual meeting
B-cell maturation antigen (BCMA) is currently the most extensively explored target for multiple myeloma (MM). BCMA-targeted therapies such as antibody-drug conjugate (ADC), bispecific antibodies (BsAbs), chimeric antigen receptor T(CAR-T) cell have shown promising therapeutic prospects in MM. We have summarized the latest reports on the three types of drugs for MM at the 2024 ASH Annual Meeting.
Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Correction: myCAF-derived Exosomal PWAR6 accelerates CRC liver metastasis via altering glutamine availability and NK cell function in the tumor microenvironment
Correction: WT1-mRNA dendritic cell vaccination of patients with glioblastoma multiforme, malignant pleural mesothelioma, metastatic breast cancer, and other solid tumors: type 1 T-lymphocyte responses are associated with clinical outcome
Recent advances in therapeutic strategies for non-small cell lung cancer
The development of targeted therapy with small-molecule tyrosine kinase inhibitors and immunotherapy with immune checkpoints inhibitors has ushered in the era of precision medicine in treating lung cancer, which remains the leading cause of cancer-related deaths worldwide. Both targeted therapy and immunotherapy have significantly improved the survival of patients with metastatic non-small-cell lung cancer (NSCLC). Additionally, recent groundbreaking studies have demonstrated their efficacy in both the perioperative setting and following concurrent chemoradiotherapy in early-stage NSCLC. Despite significant advancements in first-line treatment options, disease progression remains inevitable for most patients with advanced NSCLC, necessitating the exploration and optimization of subsequent therapeutic strategies. Emerging novel agents are expanding treatment options in the first-line setting and beyond. Recently, emerging bispecific antibodies have shown enhanced efficacy. For instance, amivantamab has been approved as a treatment for epidermal growth factor receptor (EGFR)-mutant NSCLC, including those with EGFR exon 20 insertion mutations. Additionally, antibody-drug conjugates (ADCs), including HER2-targeting trastuzumab deruxtecan, TROP2-targeting ADCs, HER3-targeting patritumab deruxtecan, and MET-targeting telisotuzumab vedotin, have demonstrated promising outcomes in several clinical trials. This review summarizes the recent advancements and challenges associated with the evolving NSCLC therapeutic landscape.
Cancer associated fibroblasts in cancer development and therapy
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Anti-TGF-β/PD-L1 bispecific antibody synergizes with radiotherapy to enhance antitumor immunity and mitigate radiation-induced pulmonary fibrosis
Despite the success of immune checkpoint inhibitors (ICIs) in multiple malignant tumors, a significant proportion of patients remain unresponsive to treatment. Radiotherapy (RT) elicits immunogenic antitumor responses but concurrently activates several immune evasion mechanisms. Our earlier research demonstrated the efficacy of YM101, an anti-TGF-β/PD-L1 bispecific antibody, in stroma-rich tumors. Nevertheless, YM101 has demonstrated reduced effectiveness in non-inflamed tumors characterized by poor immune cell infiltration. This study investigated the potential synergy between RT and YM101 in overcoming immunotherapy resistance and mitigating RT-induced pulmonary fibrosis.
CAR-NK cell therapy: latest updates from the 2024 ASH annual meeting
Natural killer cells, integral to the innate immune response, exhibit the inherent capacity to identify and eliminate cancer cells without prior exposure, positioning them as prime candidates for immunotherapeutic strategies. Chimeric antigen receptor-engineered natural killer (CAR-NK) cells obviate the requirement for human leukocyte antigen compatibility, simplifying personalized schedules and facilitating the manufacture of off-the-shelf products. In addition, CAR-NK cell therapy possesses lower risk of cytokine release syndrome and neurotoxicity, benefitting patients with higher security. Nevertheless, CAR-NK cell therapy is also confronted with challenges, including but not limited to short lifespan and restrictions from tumor microenvironment. Here, we summarized the latest advancements in the preclinical investigations and clinical trials of CAR-NK cell therapy from the 2024 ASH Annual Meeting.
Mirvetuximab soravtansine: current and future applications
Ovarian epithelial cancer (OEC), particularly high-grade serous carcinoma (HGSC), remains a clinical challenge due to its late-stage diagnosis, high recurrence rates, and poor survival outcomes. Mirvetuximab soravtansine (MIRV), an antibody-drug conjugate targeting folate receptor alpha (FRα), has demonstrated promising efficacy in platinum-resistant OEC, particularly in high FRα-expressing populations, as evidenced by key clinical trials such as FORWARD I, FORWARD II, SORAYA, and MIRASOL. These trials highlight MIRV's ability to improve progression-free survival, response rates, and quality of life in advanced disease settings. Emerging data suggest that FRα is also highly expressed in serous tubal intraepithelial carcinoma (STIC), a non-invasive precursor lesion to HGSC. Although MIRV has not yet been studied for STIC management, we propose its potential application in this context to prevent progression to invasive carcinoma, particularly in high-risk populations undergoing risk-reducing bilateral salpingo-oophorectomy. This novel use could bridge the gap between prevention and treatment, offering a proactive strategy for hereditary cancer management. Furthermore, MIRV's therapeutic versatility extends to other FRα-positive tumors, such as endometrial and breast cancers, broadening its clinical relevance. Despite challenges such as accessibility and cost, MIRV represents a significant advancement in precision medicine, with potential to redefine prevention and treatment strategies for hereditary and sporadic cancers.
Circulating tumor DNA in lymphoma: technologies and applications
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease (MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
Noncoding RNA-encoded peptides in cancer: biological functions, posttranslational modifications and therapeutic potential
In the present era, noncoding RNAs (ncRNAs) have become a subject of considerable scientific interest, with peptides encoded by ncRNAs representing a particularly promising avenue of investigation. The identification of ncRNA-encoded peptides in human cancers is increasing. These peptides regulate cancer progression through multiple molecular mechanisms. Here, we delineate the patterns of diverse ncRNA-encoded peptides and provide a synopsis of the methodologies employed for the identification of ncRNAs that possess the capacity to encode these peptides. Furthermore, we discuss the impacts of ncRNA-encoded peptides on the biological behavior of cancer cells and the underlying molecular mechanisms. In conclusion, we describe the prospects of ncRNA-encoded peptides in cancer and the challenges that need to be overcome.
Correction: Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells