Annual Review of Plant Biology

A Way to Interact with the World: Complex and Diverse Spatiotemporal Cell Wall Thickenings in Plant Roots
Cantó-Pastor A, Manzano C and Brady SM
Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors. The majority of these root cell wall thickenings and cell types that contain them are absent in the model plant despite being present in most plant species. As a result, we know very little regarding their developmental control and function. Increasing evidence suggests that these structures are critical for responding to and facilitating adaptation to a wide array of stresses that a plant root experiences. These structures function in blocking apoplastic transport, oxygen, and water loss and enhancing root penetrative strength. In this review, we describe the most common types of cell wall thickenings in the outer cell types of plant roots-the velamen, exodermal thickenings, the sclerenchyma, and phi thickenings. Their cell-type dependency, morphology, composition, environmental responsiveness, and genetic control in vascular plants are discussed, as well as their potential to generate more stress-resilient roots in the face of a changing climate.
The Dynamics, Degradation, and Afterlives of Pectins: Influences on Cell Wall Assembly and Structure, Plant Development and Physiology, Agronomy, and Biotechnology
Anderson CT and Pelloux J
Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants. We highlight recent advances in understanding the structure-function relationships of pectin-modifying enzymes and their products and how these advances point toward new approaches to bridging key knowledge gaps and manipulating pectin dynamics to control plant development. Finally, we discuss how a deeper understanding of pectin dynamics might enable innovations in agronomy and biotechnology, unlocking new benefits from these ubiquitous but complex polysaccharides.
Systems Biology of Streptophyte Cell Evolution
Goldbecker ES and de Vries J
More than 500 million years ago, a streptophyte algal population established a foothold on land and started terraforming Earth through an unprecedented radiation. This event is called plant terrestrialization and yielded the Embryophyta. Recent advancements in the field of plant evolutionary developmental biology (evo-devo) have propelled our knowledge of the closest algal relatives of land plants, the zygnematophytes, highlighting that several aspects of plant cell biology are shared between embryophytes and their sister lineage. High-throughput exploration determined that routes of signaling cascades, biosynthetic pathways, and molecular physiology predate plant terrestrialization. But how do they assemble into biological programs, and what do these programs tell us about the principal functions of the streptophyte cell? Here, we make the case that streptophyte algae are unique organisms for understanding the systems biology of the streptophyte cell, informing on not only the origin of embryophytes but also their fundamental biology.
Autophagy in Plant Health and Disease
Gross AS, Raffeiner M, Zeng Y, Üstün S and Dagdas Y
Autophagy has emerged as an essential quality control pathway in plants that selectively and rapidly removes damaged or unwanted cellular components to maintain cellular homeostasis. It can recycle a broad range of cargoes, including entire organelles, protein aggregates, and even invading microbes. It involves the de novo biogenesis of a new cellular compartment, making it intimately linked to endomembrane trafficking pathways. Autophagy is induced by a wide range of biotic and abiotic stress factors, and autophagy mutant plants are highly sensitive to stress, making it an attractive target for improving plant stress resilience. Here, we critically discuss recent discoveries related to plant autophagy and highlight open questions and future research areas.
What Are We Learning from Plant Pangenomes?
Jayakodi M, Shim H and Mascher M
A single reference genome does not fully capture species diversity. By contrast, a pangenome incorporates multiple genomes to capture the entire set of nonredundant genes in a given species, along with its genome diversity. New sequencing technologies enable researchers to produce multiple high-quality genome sequences and catalog diverse genetic variations with better precision. Pangenomic studies have detected structural variants in plant genomes, dissected the genetic architecture of agronomic traits, and helped unravel molecular underpinnings and evolutionary origins of plant phenotypes. The pangenome concept has further evolved into a so-called superpangenome that includes wild relatives within a genus or clade and shifted to graph-based reference systems. Nevertheless, building pangenomes and representing complex structural variants remain challenging in many crops. Standardized computing pipelines and common data structures are needed to compare and interpret pangenomes. The growing body of plant pangenomics data requires new algorithms, huge data storage capacity, and training to help researchers and breeders take advantage of newly discovered genes and genetic variants.
Green Revolution DELLA Proteins: Functional Analysis and Regulatory Mechanisms
Alabadí D and Sun TP
The genes, also referred to as Green Revolution genes, encode conserved master growth regulators in plants. The nuclear-localized DELLA proteins are transcription regulators that interact with hundreds of transcription factors and other transcription regulators. They not only function as gibberellin signaling repressors in vascular plants but also play a central role in coordinating diverse signaling pathways in response to both internal hormonal signals and external cues (e.g., light and nutrient conditions, biotic and abiotic stresses). Through a combination of genetic, genomic, biochemical, and structural studies, significant advances have been made in understanding both the functional domains and motifs within DELLAs and the molecular mechanisms underlying their function. Here, we highlight new insights into the molecular workings of DELLA proteins, including an evolutionary perspective.
From Starfish to Gibberellins: Biosynthesis and Regulation of Plant Hormones
Kamiya Y
I grew up with laboratory glassware and microscopes as treasures from a young age. I was a member of the Chemistry Club in junior high school, and when I visited RIKEN with club members, I wished to become an organic chemist in the future. I received my doctoral degree through the study of the spawning inhibitor of starfish. I became a researcher at RIKEN and identified the chemical structure of a mating pheromone of a yeast. As a plant biochemist, I studied a cell-free system of gibberellins at the University of Göttingen and tried to identify the gibberellin biosynthetic pathways in plants and clone gibberellin biosynthetic enzyme genes to understand the light regulation of plant growth. I also worked on biosynthetic enzymes of abscisic acid, indole acetic acid, and brassinosteroids. I developed a special interest in the oxygenases of plant hormone biosynthesis, cytochrome P450 monooxygenases, 2-oxoglutartae-dependent dioxygenase, molybdenum cofactor-containing oxidase, and flavin-containing monooxygenase.
Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments
Koga H, Ikematsu S and Kimura S
Amphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.
Dissecting Mechanisms of Epigenetic Memory Through Computational Modeling
Briffa A, Menon G, Movilla Miangolarra A and Howard M
Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection. We summarize the main modeling approaches involved and highlight the principal conceptual advances that the modeling has enabled through iterative cycles of predictive modeling and experiments. Lastly, we discuss remaining gaps in our understanding and how intertwined theory and experimental approaches might help in their resolution.
Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation
Aitken SN, Jordan R and Tumas HR
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
LAFL Factors in Seed Development and Phase Transitions
Gazzarrini S and Song L
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
B Vitamins: An Update on Their Importance for Plant Homeostasis
Fitzpatrick TB
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Intercellular Communication in Shoot Meristems
Demesa-Arevalo E, Narasimhan M and Simon R
The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.
New Insight Into Phytochromes: Connecting Structure to Function
Hughes J and Winkler A
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Physiological Responses of C Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints
Heckman RW, Pereira CG, Aspinwall MJ and Juenger TE
C perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C perennial bioenergy grasses are predicted to thrive under climate change-C photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C physiology with recent advances in crop improvement, especially genomic selection.
FERONIA: A Receptor Kinase at the Core of a Global Signaling Network
Cheung AY
Initially identified as a key regulator of female fertility in , the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.
Fighting for Survival at the Stomatal Gate
Melotto M, Fochs B, Jaramillo Z and Rodrigues O
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied - pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites
Bai Y, Liu X and Baldwin IT
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Viral Recognition and Evasion in Plants
Lozano-Durán R
Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.
Plasmodesmata: Channels Under Pressure
Bayer EM and Benitez-Alfonso Y
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining
Dixon RA, Puente-Urbina A, Beckham GT and Román-Leshkov Y
Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.