Biocatalytic, Enantioenriched Primary Amination of Tertiary C-H Bonds
Intermolecular functionalization of tertiary C-H bonds to construct fully substituted stereogenic carbon centers represents a formidable challenge: without the assistance of directing groups, state-of-the-art catalysts struggle to introduce chirality to racemic tertiary s -carbon centers. Direct asymmetric functionalization of such centers is a worthy reactivity and selectivity goal for modern biocatalysis. Here we present an engineered nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome P450, that is capable of aminating tertiary C-H bonds to provide chiral -tertiary primary amines with high efficiency (up to 2300 total turnovers) and selectivity (up to >99% enantiomeric excess (e.e.)). The construction of fully substituted stereocenters with methyl and ethyl groups underscores the enzyme's remarkable selectivity. A comprehensive substrate scope study demonstrates the biocatalyst's compatibility with diverse functional groups and tertiary C-H bonds. Mechanistic studies elucidate how active-site residues distinguish between the enantiomers and enable the enzyme to perform this transformation with excellent enantioselectivity.
Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids
Hybrid systems that integrate synthetic materials with biological machinery offer opportunities for sustainable and efficient catalysis. However, the multidisciplinary and unique nature of the materials-biology interface requires researchers to draw insights from different fields. In this Perspective, using examples from the area of N and CO fixation, we provide a unified discussion of critical aspects of the material-microbe interface, simultaneously considering the requirements of physical and biological sciences that have a tangible impact on the performance of biohybrids. We first discuss the figures of merit and caveats for the evaluation of catalytic performance. Then, we reflect on the interactions and potential synergies at the materials-biology interface, as well as the challenges and opportunities for a deepened fundamental understanding of abiotic-biotic catalysis.
Split cross-coupling via Rh-catalysed activation of unstrained aryl-aryl bonds
Constructive functionalization of unstrained aryl-aryl bonds has been a fundamental challenge in organic synthesis due to the inertness of these bonds. Here we report a split cross-coupling strategy that allows two-fold arylation with diverse aryl iodides through cleaving unstrained aryl-aryl bonds of common 2,2'-biphenols. The reaction is catalyzed by a rhodium complex and promoted by a removable phosphinite directing group and an organic reductant. The combined experimental and computational mechanistic studies reveal a turnover-limiting reductive elimination step that can be accelerated by a Lewis acid co-catalyst. The utility of this coupling method has been illustrated in the modular and simplified syntheses of unsymmetrical 2,6-diarylated phenols and skeletal insertion of phenyl units.
Congested C(sp3)-rich architectures enabled by iron-catalysed conjunctive alkylation
Catalytic cross-coupling by transition metals has revolutionized the formation of C-C bonds in organic synthesis. However, the challenge of forming multiple alkyl-alkyl bonds in crowded environments remains largely unresolved. Here, we report the regioselective functionalization of olefins with sp-hybridized organohalides and organozinc reagents using a simple (terpyridine)iron catalyst. Aliphatic groups of various sizes are successfully installed on either olefinic carbon, furnishing a diverse array of products with congested cores featuring C- or heteroatom-substituted stereocenters. The method enables access to valuable but synthetically challenging C(sp)-rich molecules, including alicyclic compounds bearing multiple contiguous stereocenters through annulation cascades. Mechanistic and theoretical studies suggest a stepwise iron-mediated radical carbometallation pathway followed by outer-sphere C-C bond formation, which potentially opens the door to a broader scope of transformations and new chemical space.
Ring expansion of indene by photoredox-enabled functionalized carbon-atom insertion
Skeletal editing has received unprecedented attention as an emerging technology for the late-stage manipulation of molecular scaffolds. The direct achievement of functionalized carbon-atom insertion in aromatic rings is challenging. Despite ring-expanding carbon-atom insertion reactions, such as the Ciamician-Dennstedt re-arrangement, being performed for more than 140 years, only a few relevant examples of such transformations have been reported, with these limited to the installation of halogen, ester and phenyl groups. Here we describe a photoredox-enabled functionalized carbon-atom insertion reaction into indene. We disclose the utilization of a radical carbyne precursor that facilitates the insertion of carbon atoms bearing a variety of functional groups, including trifluoromethyl, ester, phosphate ester, sulfonate ester, sulfone, nitrile, amide, aryl ketone and aliphatic ketone fragments to access a library of 2-substituted naphthalenes. The application of this methodology to the skeletal editing of molecules of pharmaceutical relevance highlights its utility.
Interfacial Tuning of Electrocatalytic Ag Surfaces for Fragment-Based Electrophile Coupling
Construction of C‒C bonds in medicinal chemistry frequently draws on the reductive coupling of organic halides with ketones or aldehydes. Catalytic C(sp)‒C(sp) bond formation, however, is constrained by the competitive side reactivity of radical intermediates following sp organic halide activation. Here, an alternative paradigm deploys catalytic Ag surfaces for reductive fragment-based electrophile coupling compatible with sp organic halides. We use in-situ spectroscopy, electrochemical analyses, and simulation to uncover the catalytic interfacial structure and guide reaction development. Specifically, Mg(OAc) outcompetes the interaction between Ag and the aldehyde, thereby tuning the Ag surface for selective product formation. Data are consistent with an increased population of Mg-bound aldehyde facilitating the addition of a carbon-centered radical (product of Ag-electrocatalyzed organic halide reduction) to the carbonyl. Electron transfer from Ag to the resultant alkoxy radical yields the desired alcohol. Molecular interfacial tuning at reusable catalytic electrodes will accelerate development of sustainable organic synthetic methods.
Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation
Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Methods for the asymmetric synthesis of these molecules are therefore highly desirable, particularly through the selective functionalization of unreactive aliphatic C-H bonds. Here we show the development of a strategy for the asymmetric synthesis of β-, γ-, and δ-lactams via hemoprotein-catalysed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation yielding the desired lactam products in high yields, high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Additionally, an alkaloid natural product and a drug molecule were synthesized chemoenzymatically in much fewer steps (7-8 vs. 11-12) than previously reported, further demonstrating the power of biosynthetic strategy for the preparation of complex bioactive molecules.
In vitro construction of the COQ metabolon unveils the molecular determinants of coenzyme Q biosynthesis
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell.
Product analog binding identifies the copper active site of particulate methane monooxygenase
Nature's primary methane-oxidizing enzyme, the membrane-bound particulate methane monooxygenase (pMMO), catalyzes the oxidation of methane to methanol. pMMO activity requires copper, and decades of structural and spectroscopic studies have sought to identify the active site among three candidates: the Cu, Cu, and Cu sites. Challenges associated with the isolation of active pMMO have hindered progress toward locating its catalytic center. However, reconstituting pMMO into native lipid nanodiscs stabilizes its structure and recovers its activity. Here, these active samples were incubated with 2,2,2,-trifluoroethanol (TFE), a product analog that serves as a readily visualized active-site probe. Interactions of TFE with the Cu site were observed by both pulsed ENDOR spectroscopy and cryoEM, implicating Cu and the surrounding hydrophobic pocket as the likely site of methane oxidation. Use of these orthogonal techniques on parallel samples is a powerful approach that can circumvent difficulties in interpreting metalloenzyme cryoEM maps.
Coupled catalytic states and the role of metal coordination in Cas9
Controlling the activity of the CRISPR-Cas9 system is essential to its safe adoption for clinical and research applications. Although the conformational dynamics of Cas9 are known to control its enzymatic activity, details of how Cas9 influences the catalytic processes at both nuclease domains remain elusive. Here we report five cryo-electron microscopy structures of the active Cas9 complex along the reaction path at 2.2-2.9 Å resolution. We observed that a large movement in one nuclease domain, triggered by the cognate DNA, results in noticeable changes in the active site of the other domain that is required for metal coordination and catalysis. Furthermore, the conformations synchronize the reaction intermediates, enabling coupled cutting of the two DNA strands. Consistent with the roles of conformations in organizing the active sites, adjustments to the metal-coordination residues lead to altered metal specificity of Cas9 and commonly used Cas9 in cells.
Photoenzymatic Enantioselective Intermolecular Radical Hydroamination
Since the discovery of Hofmann-Löffler-Freytag reaction more than 130 years ago, nitrogen-centered radicals have been widely studied in both structures and reactivities. Nevertheless, catalytic enantioselective intermolecular radical hydroamination remains a challenge due to the existence of side reactions, short lifetime of nitrogen-centered radicals, and lack of understanding of the fundamental catalytic steps. In chemistry, nitrogen-centered radicals are produced with radical initiators, photocatalysts, or electrocatalysts. On the other hand, the generation and reaction of nitrogen-centered radicals are unknown in nature. Here we report a pure biocatalytic system by successfully repurposing an ene-reductase through directed evolution for the photoenzymatic production of nitrogen-centered radicals and enantioselective intermolecular radical hydroaminations. These reactions progress efficiently at room temperature under visible light without any external photocatalysts and exhibit excellent enantioselectivities. Detailed mechanistic study reveals that the enantioselectivity originates from the radical-addition step while the reactivity originates from the ultrafast photoinduced electron transfer (ET) from reduced flavin mononucleotide (FMNH) to nitrogen-containing substrates.
Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis
The effective induction of high levels of stereocontrol for free radical-mediated transformations represents a notorious challenge in asymmetric catalysis. Herein, we describe a novel metalloredox biocatalysis strategy to repurpose natural cytochromes P450 to catalyse asymmetric radical cyclisation to arenes through an unnatural electron transfer mechanism. Empowered by directed evolution, engineered P450s allowed diverse radical cyclisation selectivities to be accomplished in a catalyst-controlled fashion: P450 and P450 facilitated enantioconvergent transformations of racemic substrates, giving rise to either enantiomer of the product with excellent total turnover numbers (up to 12,000). In addition to these enantioconvergent variants, another engineered radical cyclase, P450, permitted efficient kinetic resolution of racemic chloride substrates ( factor = 18). Furthermore, computational studies revealed a proton-coupled electron transfer (PCET) mechanism for the radical-polar crossover step, suggesting the potential role of the haem carboxylate as a base catalyst. Collectively, the excellent tunability of this metalloenzyme family provides an exciting platform for harnessing free radical intermediates for asymmetric catalysis.
Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions
Polypyridine-ligated nickel complexes are widely used as privileged catalysts in a variety of cross-coupling reactions. The rapid adoption of these complexes is tentatively attributed to their ability to shuttle between different oxidation states and engage in electron-transfer reactions. However, these reactions are poorly understood in mechanistic terms. Here we investigate the reactivity of pseudohalide- and halide-ligated Ni(II) complexes, containing polypyridine ligands, in electron-transfer reactions. Specifically, Ni(II) halide complexes trigger comproportionation with Ni(0) with exceptional ease en route to Ni(I)L species, whereas the corresponding Ni(II) pseudohalide congeners are resistant to electron transfer, with Ni(I) pseudohalides being prone to disproportionation events. These observations are corroborated by electrochemical techniques and detailed quantum mechanical calculations. We also show that catalytically inactive Ni(II) pseudohalide complexes can be reactivated in the presence of exogeneous salts. From a broader perspective, this study provides rationalizations for overlooked and fundamental steps within the Ni-catalysed cross-coupling arena, thus offering blueprints for designing future Ni-catalysed reactions.
Chemodivergent C(sp)-H and C(sp)-H Cyanomethylation Using Engineered Carbene Transferases
The ubiquity of C-H bonds presents an attractive opportunity to elaborate and build complexity in organic molecules. Methods for selective functionalization, however, often must differentiate among multiple chemically similar and, in some cases indistinguishable, C-H bonds. An advantage of enzymes is that they can be finely tuned using directed evolution to achieve control over divergent C-H functionalization pathways. Here, we demonstrate engineered enzymes that effect a new-to-nature C-H alkylation with unparalleled selectivity: two complementary carbene C-H transferases derived from a cytochrome P450 from deliver an -cyanocarbene into the -amino C(sp)-H bonds or the -arene C(sp)-H bonds of -substituted arenes. These two transformations proceed via different mechanisms, yet only minimal changes to the protein scaffold (nine mutations, less than 2% of the sequence) were needed to adjust the enzyme's control over the site-selectivity of cyanomethylation. The X-ray crystal structure of the selective C(sp)-H alkylase, P411-PFA, reveals an unprecedented helical disruption which alters the shape and electrostatics in the enzyme active site. Overall, this work demonstrates the advantages of enzymes as C-H functionalization catalysts for divergent molecular derivatization.
Photoenzymes for Radical C-C Coupling
General catalytic methods for free radical-mediated asymmetric transformations have long eluded synthetic organic chemists. Now, NAD(P)H-dependent ketoreductases (KREDs) are repurposed and engineered as highly efficient photoenzymes to catalyse asymmetric radical C-C couplings.
Three-dimensional nanoimaging of fuel cell catalyst layers
Catalyst layers in proton exchange membrane fuel cells consist of platinum-group-metal nanocatalysts supported on carbon aggregates, forming a porous structure through which an ionomer network percolates. The local structural character of these heterogeneous assemblies is directly linked to the mass-transport resistances and subsequent cell performance losses; its three-dimensional visualization is therefore of interest. Herein we implement deep-learning-aided cryogenic transmission electron tomography for image restoration, and we quantitatively investigate the full morphology of various catalyst layers at the local-reaction-site scale. The analysis enables computation of metrics such as the ionomer morphology, coverage and homogeneity, location of platinum on the carbon supports, and platinum accessibility to the ionomer network, with the results directly compared and validated with experimental measurements. We expect that our findings and methodology for evaluating catalyst layer architectures will contribute towards linking the morphology to transport properties and overall fuel cell performance.
The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis
Anthocyanins are ubiquitous plant pigments used in a variety of technological applications. Yet, after over a century of research, the penultimate biosynthetic step to anthocyanidins attributed to the action of leucoanthocyanidin dioxygenase has never been efficiently reconstituted outside plants, preventing the construction of heterologous cell factories. Through biochemical and structural analysis, here we show that anthocyanin-related glutathione transferases, currently implicated only in anthocyanin transport, catalyse an essential dehydration of the leucoanthocyanidin dioxygenase product, flavan-3,3,4-triol, to generate cyanidin. Building on this knowledge, introduction of anthocyanin-related glutathione transferases into a heterologous biosynthetic pathway in baker's yeast results in >35-fold increased anthocyanin production. In addition to unravelling the long-elusive anthocyanin biosynthesis, our findings pave the way for the colourants' heterologous microbial production and could impact the breeding of industrial and ornamental plants.
Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states
Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in . It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.
Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C-H bond activation
The development of novel strategies to rapidly construct complex chiral molecules from readily available feedstocks is a long-term pursuit in the chemistry community. Radical-mediated alkene difunctionalizations represent an excellent platform towards this goal. However, asymmetric versions remain highly challenging, and more importantly, examples featuring simple hydrocarbons as reaction partners are elusive. Here we report an asymmetric three-component alkene dicarbofunctionalization capitalizing on the direct activation of C( )-H bonds through the combination of photocatalysed hydrogen atom transfer and nickel catalysis. This protocol provides an efficient platform for installing two vicinal carbon-carbon bonds across alkenes in an atom-economic fashion, providing a wide array of high-value chiral α-aryl/alkenyl carbonyls and phosphonates, as well as 1,1-diarylalkanes from ubiquitous alkane, ether and alcohol feedstocks. This method exhibits operational simplicity, broad substrate scope and excellent regioselectivity, chemoselectivity and enantioselectivity. The compatibility with bioactive motifs and expedient synthesis of pharmaceutically relevant molecules highlight the synthetic potential of this protocol.
Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase
Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme's conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.
A synthetic methylotrophic as a chassis for bioproduction from methanol
Methanol synthesized from captured greenhouse gases is an emerging renewable feedstock with great potential for bioproduction. Recent research has raised the prospect of methanol bioconversion to value-added products using synthetic methylotrophic , as its metabolism can be rewired to enable growth solely on the reduced one-carbon compound. Here we describe the generation of an strain that grows on methanol at a doubling time of 4.3 h-comparable to many natural methylotrophs. To establish bioproduction from methanol using this synthetic chassis, we demonstrate biosynthesis from four metabolic nodes from which numerous bioproducts can be derived: lactic acid from pyruvate, polyhydroxybutyrate from acetyl coenzyme A, itaconic acid from the tricarboxylic acid cycle and -aminobenzoic acid from the chorismate pathway. In a step towards carbon-negative chemicals and valorizing greenhouse gases, our work brings synthetic methylotrophy in within reach of industrial applications.