CHEMICAL SOCIETY REVIEWS

Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications
Sun ML, Wang HY, Feng Y, Ren JT, Wang L and Yuan ZY
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (, valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Liquid-liquid and gas-liquid dispersions in electrochemistry: concepts, applications and perspectives
Wang K, Wang Y and Pera-Titus M
Electrochemistry plays a pivotal role in a vast number of domains spanning from sensing and manufacturing to energy storage, environmental conservation, and healthcare. Electrochemical applications encompassing gaseous or organic substrates encounter shortcomings ascribed to high mass transfer/internal resistances and low solubility in aqueous electrolytes, resulting in high overpotentials. In practice, strong acids and expensive organic electrolytes are required to promote charge transfer in electrochemical cells, resulting in a high carbon footprint. Liquid-liquid (L-L) and gas-liquid (G-L) dispersions involve the dispersion of a nano/micro gas or liquid into a continuous liquid phase such as micelles, (macro)emulsions, microemulsions, and microfoams stabilised by surface-active agents such as surfactants and colloidal particles. These dispersions hold promise in addressing the drawbacks of electrochemical reactions by fostering the interfacial surface area between immiscible reagents and mass transfer of electroactive organic and gas reactants and products from/to the bulk to/from the electrode surface. This tutorial review provides a taxonomy of liquid-liquid and gas-liquid dispersions for applications in electrochemistry, with emphasis on their assets and challenges in industrially relevant reactions for fine chemistry and depollution.
Lignin-based porous carbon adsorbents for CO capture
Barker-Rothschild D, Chen J, Wan Z, Renneckar S, Burgert I, Ding Y, Lu Y and Rojas OJ
A major driver of global climate change is the rising concentration of atmospheric CO, the mitigation of which requires the development of efficient and sustainable carbon capture technologies. Solid porous adsorbents have emerged as promising alternatives to liquid amine counterparts due to their potential to reduce regeneration costs. Among them, porous carbons stand out for their high surface area, tailorable pore structure, and exceptional thermal and mechanical properties, making them highly robust and efficient in cycling operations. Moreover, porous carbons can be synthesized from readily available organic (waste) streams, reducing costs and promoting circularity. Lignin, a renewable and abundant by-product of the forest products industry and emerging biorefineries, is a complex organic polymer with a high carbon content, making it a suitable precursor for carbon-based adsorbents. This review explores lignin's sources, structure, and thermal properties, as well as traditional and emerging methods for producing lignin-based porous adsorbents. We examine the physicochemical properties, CO adsorption mechanisms, and performance of lignin-derived materials. Additionally, the review highlights recent advances in lignin valorization and provides critical insights into optimizing the design of lignin-based adsorbents to enhance CO capture efficiency. Finally, it addresses the prospects and challenges in the field, emphasizing the significant role that lignin-derived materials could play in advancing sustainable carbon capture technologies and mitigating climate change.
Design strategies and applications of cyanine dyes in phototherapy
Yuan J, Yang H, Huang W, Liu S, Zhang H, Zhang X and Peng X
Cyanine dyes have been widely used in phototherapy in recent years due to their excellent optical properties and diverse modifiable structures. This review provides detailed descriptions of the basic structures of various cyanines and their derivatives as well as their optical properties. It summarizes the strategies for constructing cyanine dyes for phototherapy and discusses their structure-effect relationship. Furthermore, a comprehensive classification and summary of the applications of cyanine dyes in phototherapy are presented. Importantly, this review also addresses both the advances made in this field as well as the challenges that need to be overcome. We hope that these profound insights into phototherapy using cyanine dyes will facilitate the design of future systems for clinical applications based on these compounds.
Metal-organic framework-based hybrids with photon upconversion
Chen X, Zhang X and Zhao Y
Upconversion materials (UCMs) featuring an anti-Stokes type emission establish them as an important category of photoluminescent materials. Metal-organic frameworks (MOFs) are rapidly gaining prominence as a class of versatile materials with favourable physical and chemical properties, including high porosity, controllable pore size, flexible design, and diverse functional sites. To endow MOFs with upconversion capability and improve the properties and performance of UCMs, the hybrids integrating UCMs and MOFs are proven to be successful. This review focuses on the research advancements of upconverting MOF-based hybrids, encompassing classifications, luminescence mechanisms, designs, properties, and applications in energy, catalysis, and biomedical fields. The analyses on the functions of upconversion and MOFs, as well as the advantages and disadvantages of various upconverting MOF-based hybrids, are included. Future research directions spanning from properties and performance to applications are explored. This review will be valuable in highlighting the research accomplishments, inspiring more ideas, facilitating deeper investigations in diverse avenues, and further advancing the research field.
Sapiential battery systems: beyond traditional electrochemical energy
Zhang T, Yu J, Guo H, Qi J, Che M, Hou M, Jiao P, Zhang Z, Yan Z, Zhou L, Zhang K and Chen J
As indispensable energy-storage technology in modern society, batteries play a crucial role in diverse fields of 3C products, electric vehicles, and electrochemical energy storage. However, with the growing demand for future electrochemical energy devices, lithium-ion batteries as an existing advanced battery system face a series of significant challenges, such as time-consuming manual material screening, safety concerns, performance degradation, non-access in the off-grid state, poor environmental adaptability, and pollution from waste batteries. Accordingly, incorporating the characteristics of sapiential life into batteries to construct sapiential systems is one of the most engaging tactics to tackle the above issues. In this review, we introduce the concept of sapiential battery systems and provide a comprehensive overview of their core sapiential features, including materials genomics, non-destructive testing, self-healing, self-sustaining capabilities, temperature adaptation, and degradability, which endow batteries with higher performance and more functions. Moreover, the possible future research directions on sapiential battery systems are deeply discussed. This review aims to offer insights for designing beyond traditional electrochemical energy, meeting broader application scenarios such as ultra-long-endurance electric vehicles, wide-temperature energy storage, space exploration, and wearable electronic devices.
Bioorthogonally activated probes for precise fluorescence imaging
Fu Y, Zhang X, Wu L, Wu M, James TD and Zhang R
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise imaging, while also discussing future prospects in this rapidly evolving field.
A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries
Sand SC, Rupp JLM and Yildiz B
In the transition to safer, more energy-dense solid state batteries, polymer-ceramic composite electrolytes may offer a potential route to achieve simultaneously high Li-ion conductivity and enhanced mechanical stability. Despite numerous studies on the polymer-ceramic composite electrolytes, disagreements persist on whether the polymer or the ceramic is positively impacted in their constituent ionic conductivity for such composite electrolytes, and even whether the interface is a blocking layer or a highly conductive lithium ion path. This lack of understanding limits the design of effective composite solid electrolytes. By thorough and critical analysis of the data collected in the field over the last three decades, we present arguments for lithium conduction through the bulk of the polymer, ceramic, or their interface. From this analysis, we can conclude that the unexpectedly high conductivity reported for some ceramic-polymer composites cannot be accounted for by the ceramic phase alone. There is evidence to support the theory that the Li-ion conductivity in the polymer phase increases along this interface in contact with the ceramic. The potential mechanisms for this include increased free volume, decreased crystallinity, and modulated Lewis acid-base effects in the polymer, with the former two to be the more likely mechanisms. Future work in this field requires understanding these factors more quantitatively, and tuning of the ceramic surface chemistry and morphology in order to obtain targeted structural modifications in the polymer phase.
Recent advances in peptide macrocyclization strategies
Fang P, Pang WK, Xuan S, Chan WL and Leung KC
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (, native chemical ligation and transition metal catalysis), biological (, post-translational enzymatic modification and genetic code reprogramming), and supramolecular (, mechanically interlocked, metal-directed folding and self-assembly noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Metal complex-based TADF: design, characterization, and lighting devices
Farokhi A, Lipinski S, Cavinato LM, Shahroosvand H, Pashaei B, Karimi S, Bellani S, Bonaccorso F and Costa RD
The development of novel, efficient and cost-effective emitters for solid-state lighting devices (SSLDs) is ubiquitous to meet the increasingly demanding needs of advanced lighting technologies. In this context, the emergence of thermally activated delayed fluorescence (TADF) materials has stunned the photonics community. In particular, inorganic TADF material-based compounds can be engineered by chemical modification of the coordinated ligands and the type of metal centre, allowing control of their ultimate photo-/electroluminescence properties, while providing a viable emitter platform for enhancing the efficiency of state-of-the-art organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs). By presenting an overview of the state of the art of all metal complex-based TADF compounds, this review aims to provide a comprehensive, authoritative and critical reference for their design, characterization and device application, highlighting the advantages and drawbacks for the chemical, photonic and optoelectronic communities involved in this interdisciplinary research field.
A practical approach to quantitative analytical surface-enhanced Raman spectroscopy
Xu Y, Aljuhani W, Zhang Y, Ye Z, Li C and Bell SEJ
Many of the features of SERS, such as its high sensitivity, molecular specificity and speed of analysis make it attractive as an analytical technique. However, SERS currently remains a specialist technique which has not yet entered the mainstream of analytical chemistry. Therefore, this review draws out the underlying principles for analytical SERS and provides practical tips and tricks for SERS quantitation. The aim is to show the readers how to rationally design their SERS experiments to improve quantitation performance. We begin by introducing the three core components in SERS analysis: (1) the enhancing substrate material, (2) the Raman instrument and (3) the processed data that is used to establish a calibration curve. This is followed by discussion of the analytical figures of merit relevant to SERS. In the following sections each of the three essential components in SERS quantitation and how they affect the quality of the analysis are described in more detail using examples from the literature. Finally, we highlight the current challenges in applying SERS to the analysis of complex real-life samples and briefly introduce the state-of-the-art developments on multifunctional substrates, digital SERS and AI-assisted data processing, which will help SERS rise to the challenge of moving out into routine real-world analysis.
A new era of cancer phototherapy: mechanisms and applications
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H and Tang BZ
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Intrinsic immunomodulatory hydrogels for chronic inflammation
Qian Y, Ding J, Zhao R, Song Y, Yoo J, Moon H, Koo S, Kim JS and Shen J
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Reactive carbon capture using saline water: evaluation of prospective sources, processes, and products
Dickinson-Cove A, La Plante E, Liu Y, Simonetti D, Hoek EMV, Sant G and Jassby D
Reactive carbon capture (RCC) processes involve the capture of carbon dioxide (CO) and conversion to a value-added product using a single sorbent/reaction medium. Not only can RCC processes generate valuable byproducts that can reduce the cost of carbon capture, but RCC tends to have lower energy demand than processes involving the transfer of CO between the mediums used for capture and subsequent reactions. Saline water has been proposed as a potential medium for RCC due to it's relative abundance and low cost. Additionally, the composition and chemistry of many saline water sources: (1) elevates the CO content (as compared to atmospheric concentrations), (2) provides various cations that can form valuable products with CO, and (3) enhances the kinetics of chemical reactions used to convert CO to stable byproducts. In addition to established industrial processes for converting CO into inert or valuable byproducts, we found 20 new processes and technologies that have been developed specifically to capture and convert CO using saline water. Both preexisting and emerging processes can be broadly classified as electrochemical or chemical titration processes. When assessing the potential viability of applying any of these processes for large scale carbon capture, several factors must be considered, such as the net carbon footprint of the process, the market size, location of customers and value of the end product, the energy demand and chemical costs of the process, and any other environmental impacts. The feasability of many emerging saline-based RCC processes is difficult to determine, as many technologies were tested using synthetic saline waters and/or concentrated CO sources. Notwithstanding the early stage of development of many saline-based RCC technologies, the major limitation to implementation of this approach to carbon capture is the mismatch in the scale of the markets for products of saline-based RCC and the scale of carbon capture needed to meet climate goals. However, because the products of many of the processes reviewed here are stable and non-hazardous, these technologies may also be used for carbon sequestration efforts where the products are managed as waste, in which case the carbon capture potential of these technologies can surpass the market-imposed limitations on RCC. Thus, the potential benefits of saline water-based RCC identified in this review encourage further study and development of these technologies.
Understanding deNO mechanisms in transition metal exchanged zeolites
Abdul Nasir J, Beale AM and Catlow CRA
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NO species. To understand how transition metal ions (TMIs) can effect NO reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity structural modifications.
Ultrasound mechanisms and their effect on solid synthesis and processing: a review
Devos C, Bampouli A, Brozzi E, Stefanidis GD, Dusselier M, Van Gerven T and Kuhn S
Ultrasound proves to be an effective technique for intensifying a wide range of processes involving solids and, as such, is often used to improve control over both solids formation and post-treatment stages. The intensifying capabilities of ultrasonic processing are best interpreted in the context of the chemical, transport, and mechanical effects that occur during sonication. This review presents an overview of how ultrasound influences the processing and synthesis of solids across various material classes, contextualized within an ultrasound effect framework. By describing the mechanisms underlying the different effects of ultrasound on the solid synthesis and processing, this review aims to facilitate a deeper understanding of the current literature in the field and to promote more effective utilization of ultrasound technology in solid synthesis and processing.
Multidimensionally ordered mesoporous intermetallics: Frontier nanoarchitectonics for advanced catalysis
Lv H and Liu B
Ordered intermetallics contribute to a unique class of catalyst materials due to their rich atomic features. Further engineering of ordered intermetallics at a mesoscopic scale is of great importance to expose more active sites and introduce new functions. Recently, multidimensionally ordered mesoporous intermetallic (MOMI) nanoarchitectonics, which subtly integrate atomically ordered intermetallics and mesoscopically ordered mesoporous structures, have held add-in synergies that not only enhance catalytic activity and stability but also optimize catalytic selectivity. In this tutorial review, we have summarized the latest progress in the rational design, targeted synthesis, and catalytic applications of MOMIs, with a special focus on the findings of our group. Three strategies, including concurrent template route, self-template route, and dealloying route, are discussed in detail. Furthermore, physicochemical properties and catalytic performances for several important reactions are also described to highlight the remarkable activity, high stability, and controllable selectivity of MOMI nanoarchitectonics. Finally, we conclude with a summary and explore future perspectives in the field to contribute to wider applications.
Fundamentals of the recycling of spent lithium-ion batteries
Li P, Luo S, Lin Y, Xiao J, Xia X, Liu X, Wang L and He X
This review discusses the critical role of fundamentals of battery recycling in addressing the challenges posed by the increasing number of spent lithium-ion batteries (LIBs) due to the widespread use of electric vehicles and portable electronics, by providing the theoretical basis and technical support for recycling spent LIBs, including battery classification, ultrasonic flaw detection, pretreatment (, discharging, mechanical crushing, and physical separation), electrolyte recovery, direct regeneration, and theoretical calculations and simulations. Physical chemistry principles are essential for achieving effective separation of different components through methods like screening, magnetic separation, and flotation. Electrolyte recovery involves separation and purification of electrolytes through advanced physical and chemical techniques. Direct regeneration technology restores the structure of electrode materials at the microscopic scale, requiring precise control of the physical state and crystal structure of the material. Physical processes such as phase changes, solubility, and diffusion are fundamental to techniques like solid-state sintering, eutectic-salt treatment, and hydrothermal methods. Theoretical calculations and simulations help predict the behaviour of materials during recycling, guiding process optimization. This review provides insights into understanding and improving the recycling process, emphasizing the central role of physical chemistry principles in addressing environmental and energy issues. It is valuable for promoting innovation in spent LIB recycling processes and is expected to stimulate interest among researchers and manufacturers.
Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y and Kawano R
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB and Jiang J
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (, ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Boron enabled bioconjugation chemistries
Zheng M, Kong L and Gao J
Novel bioconjugation reactions have been heavily pursued for the past two decades. A myriad of conjugation reactions have been developed for labeling molecules of interest in their native context as well as for constructing multifunctional molecular entities or stimuli-responsive materials. A growing cluster of bioconjugation reactions were realized by tapping into the unique properties of boron. As a rare element in human biology, boronic acids and esters exhibit remarkable biocompatibility. A number of organoboron reagents have been evaluated for bioconjugation, targeting the reactivity of either native biomolecules or those incorporating bioorthogonal functional groups. Owing to the dynamic nature of B-O and B-N bond formation, a significant portion of the boron-enabled bioconjugations exhibit rapid reversibility and accordingly have found applications in the development of reversible covalent inhibitors. On the other hand, stable bioconjugations have been developed that display fast kinetics and significantly expand the repertoire of bioorthogonal chemistry. This contribution presents a summary and comparative analysis of the recently developed boron-mediated bioconjugations. Importantly, this article seeks to provide an in-depth discussion of the thermodynamic and kinetic profiles of these boron-enabled bioconjugations, which reveals structure-reactivity relationships and provides guidelines for bioapplications.