PSYCHOMETRIKA

Modeling Evasive Response Bias in Randomized Response: Cheater Detection Versus Self-protective No-Saying
Sayed KHA, Cruyff MJLF and van der Heijden PGM
Randomized response is an interview technique for sensitive questions designed to eliminate evasive response bias. Since this elimination is only partially successful, two models have been proposed for modeling evasive response bias: the cheater detection model for a design with two sub-samples with different randomization probabilities and the self-protective no sayers model for a design with multiple sensitive questions. This paper shows the correspondence between these models, and introduces models for the new, hybrid "ever/last year" design that account for self-protective no saying and cheating. The model for one set of ever/last year questions has a degree of freedom that can be used for the inclusion of a response bias parameter. Models with multiple degrees of freedom are introduced for extensions of the design with a third randomized response question and a second set of ever/last year questions. The models are illustrated with two surveys on doping use. We conclude with a discussion of the pros and cons of the ever/last year design and its potential for future research.
Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes
Cho G and Hwang H
Asymptotically Correct Person Fit z-Statistics For the Rasch Testlet Model
Lin Z, Jiang T, Rijmen F and Van Wamelen P
A well-known person fit statistic in the item response theory (IRT) literature is the statistic (Drasgow et al. in Br J Math Stat Psychol 38(1):67-86, 1985). Snijders (Psychometrika 66(3):331-342, 2001) derived , which is the asymptotically correct version of when the ability parameter is estimated. However, both statistics and other extensions later developed concern either only the unidimensional IRT models or multidimensional models that require a joint estimate of latent traits across all the dimensions. Considering a marginalized maximum likelihood ability estimator, this paper proposes and , which are extensions of and , respectively, for the Rasch testlet model. The computation of relies on several extensions of the Lord-Wingersky algorithm (1984) that are additional contributions of this paper. Simulation results show that has close-to-nominal Type I error rates and satisfactory power for detecting aberrant responses. For unidimensional models, and reduce to and , respectively, and therefore allows for the evaluation of person fit with a wider range of IRT models. A real data application is presented to show the utility of the proposed statistics for a test with an underlying structure that consists of both the traditional unidimensional component and the Rasch testlet component.
Are Sum Scores a Great Accomplishment of Psychometrics or Intuitive Test Theory?
Mislevy RJ
Sijtsma, Ellis, and Borsboom (Psychometrika, 89:84-117, 2024. https://doi.org/10.1007/s11336-024-09964-7 ) provide a thoughtful treatment in Psychometrika of the value and properties of sum scores and classical test theory at a depth at which few practicing psychometricians are familiar. In this note, I offer comments on their article from the perspective of evidentiary reasoning.
Ordinal Outcome State-Space Models for Intensive Longitudinal Data
Henry TR, Slipetz LR, Falk A, Qiu J and Chen M
Intensive longitudinal (IL) data are increasingly prevalent in psychological science, coinciding with technological advancements that make it simple to deploy study designs such as daily diary and ecological momentary assessments. IL data are characterized by a rapid rate of data collection (1+ collections per day), over a period of time, allowing for the capture of the dynamics that underlie psychological and behavioral processes. One powerful framework for analyzing IL data is state-space modeling, where observed variables are considered measurements for underlying states (i.e., latent variables) that change together over time. However, state-space modeling has typically relied on continuous measurements, whereas psychological data often come in the form of ordinal measurements such as Likert scale items. In this manuscript, we develop a general estimation approach for state-space models with ordinal measurements, specifically focusing on a graded response model for Likert scale items. We evaluate the performance of our model and estimator against that of the commonly used "linear approximation" model, which treats ordinal measurements as though they are continuous. We find that our model resulted in unbiased estimates of the state dynamics, while the linear approximation resulted in strongly biased estimates of the state dynamics. Finally, we develop an approximate standard error, termed slice standard errors and show that these approximate standard errors are more liberal than true standard errors (i.e., smaller) at a consistent bias.
Remarks from the Editor-in-Chief
Sinharay S
Rejoinder to McNeish and Mislevy: What Does Psychological Measurement Require?
Sijtsma K, Ellis JL and Borsboom D
In this rejoinder to McNeish (2024) and Mislevy (2024), who both responded to our focus article on the merits of the simple sum score (Sijtsma et al., 2024), we address several issues. Psychometrics education and in particular psychometricians' outreach may help researchers to use IRT models as a precursor for the responsible use of the latent variable score and the sum score. Different methods used for test and questionnaire construction often do not produce highly different results, and when they do, this may be due to an unarticulated attribute theory generating noisy data. The sum score and transformations thereof, such as normalized test scores and percentiles, may help test practitioners and their clients to better communicate results. Latent variables prove important in more advanced applications such as equating and adaptive testing where they serve as technical tools rather than communication devices. Decisions based on test results are often binary or use a rather coarse ordering of scale levels, hence, do not require a high level of granularity (but nevertheless need to be precise). A gap exists between psychology and psychometrics which is growing deeper and wider, and that needs to be bridged. Psychology and psychometrics must work together to attain this goal.
A Note on Ising Network Analysis with Missing Data
Zhang S and Chen Y
The Ising model has become a popular psychometric model for analyzing item response data. The statistical inference of the Ising model is typically carried out via a pseudo-likelihood, as the standard likelihood approach suffers from a high computational cost when there are many variables (i.e., items). Unfortunately, the presence of missing values can hinder the use of pseudo-likelihood, and a listwise deletion approach for missing data treatment may introduce a substantial bias into the estimation and sometimes yield misleading interpretations. This paper proposes a conditional Bayesian framework for Ising network analysis with missing data, which integrates a pseudo-likelihood approach with iterative data imputation. An asymptotic theory is established for the method. Furthermore, a computationally efficient Pólya-Gamma data augmentation procedure is proposed to streamline the sampling of model parameters. The method's performance is shown through simulations and a real-world application to data on major depressive and generalized anxiety disorders from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC).
New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data
Lee S and Gu Y
Cognitive diagnostic models (CDMs) are a popular family of discrete latent variable models that model students' mastery or deficiency of multiple fine-grained skills. CDMs have been most widely used to model categorical item response data such as binary or polytomous responses. With advances in technology and the emergence of varying test formats in modern educational assessments, new response types, including continuous responses such as response times, and count-valued responses from tests with repetitive tasks or eye-tracking sensors, have also become available. Variants of CDMs have been proposed recently for modeling such responses. However, whether these extended CDMs are identifiable and estimable is entirely unknown. We propose a very general cognitive diagnostic modeling framework for arbitrary types of multivariate responses with minimal assumptions, and establish identifiability in this general setting. Surprisingly, we prove that our general-response CDMs are identifiable under -matrix-based conditions similar to those for traditional categorical-response CDMs. Our conclusions set up a new paradigm of identifiable general-response CDMs. We propose an EM algorithm to efficiently estimate a broad class of exponential family-based general-response CDMs. We conduct simulation studies under various response types. The simulation results not only corroborate our identifiability theory, but also demonstrate the superior empirical performance of our estimation algorithms. We illustrate our methodology by applying it to a TIMSS 2019 response time dataset.
Bayesian Adaptive Lasso for Detecting Item-Trait Relationship and Differential Item Functioning in Multidimensional Item Response Theory Models
Shan N and Xu PF
In multidimensional tests, the identification of latent traits measured by each item is crucial. In addition to item-trait relationship, differential item functioning (DIF) is routinely evaluated to ensure valid comparison among different groups. The two problems are investigated separately in the literature. This paper uses a unified framework for detecting item-trait relationship and DIF in multidimensional item response theory (MIRT) models. By incorporating DIF effects in MIRT models, these problems can be considered as variable selection for latent/observed variables and their interactions. A Bayesian adaptive Lasso procedure is developed for variable selection, in which item-trait relationship and DIF effects can be obtained simultaneously. Simulation studies show the performance of our method for parameter estimation, the recovery of item-trait relationship and the detection of DIF effects. An application is presented using data from the Eysenck Personality Questionnaire.
Practical Implications of Sum Scores Being Psychometrics' Greatest Accomplishment
McNeish D
This paper reflects on some practical implications of the excellent treatment of sum scoring and classical test theory (CTT) by Sijtsma et al. (Psychometrika 89(1):84-117, 2024). I have no major disagreements about the content they present and found it to be an informative clarification of the properties and possible extensions of CTT. In this paper, I focus on whether sum scores-despite their mathematical justification-are positioned to improve psychometric practice in empirical studies in psychology, education, and adjacent areas. First, I summarize recent reviews of psychometric practice in empirical studies, subsequent calls for greater psychometric transparency and validity, and how sum scores may or may not be positioned to adhere to such calls. Second, I consider limitations of sum scores for prediction, especially in the presence of common features like ordinal or Likert response scales, multidimensional constructs, and moderated or heterogeneous associations. Third, I review previous research outlining potential limitations of using sum scores as outcomes in subsequent analyses where rank ordering is not always sufficient to successfully characterize group differences or change over time. Fourth, I cover potential challenges for providing validity evidence for whether sum scores represent a single construct, particularly if one wishes to maintain minimal CTT assumptions. I conclude with thoughts about whether sum scores-even if mathematically justified-are positioned to improve psychometric practice in empirical studies.
Reliability Theory for Measurements with Variable Test Length, Illustrated with ERN and Pe Collected in the Flanker Task
Ellis JL, Sijtsma K, de Groot K and Groenen PJF
In psychophysiology, an interesting question is how to estimate the reliability of event-related potentials collected by means of the Eriksen Flanker Task or similar tests. A special problem presents itself if the data represent neurological reactions that are associated with some responses (in case of the Flanker Task, responding incorrectly on a trial) but not others (like when providing a correct response), inherently resulting in unequal numbers of observations per subject. The general trend in reliability research here is to use generalizability theory and Bayesian estimation. We show that a new approach based on classical test theory and frequentist estimation can do the job as well and in a simpler way, and even provides additional insight to matters that were unsolved in the generalizability method approach. One of our contributions is the definition of a single, overall reliability coefficient for an entire group of subjects with unequal numbers of observations. Both methods have slightly different objectives. We argue in favor of the classical approach but without rejecting the generalizability approach.
Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models
Xu S, Lu J, Zhang J, Wang C and Xu G
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel "divide- and-conquer" parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.
The InterModel Vigorish as a Lens for Understanding (and Quantifying) the Value of Item Response Models for Dichotomously Coded Items
Domingue BW, Kanopka K, Kapoor R, Pohl S, Chalmers RP, Rahal C and Rhemtulla M
The deployment of statistical models-such as those used in item response theory-necessitates the use of indices that are informative about the degree to which a given model is appropriate for a specific data context. We introduce the InterModel Vigorish (IMV) as an index that can be used to quantify accuracy for models of dichotomous item responses based on the improvement across two sets of predictions (i.e., predictions from two item response models or predictions from a single such model relative to prediction based on the mean). This index has a range of desirable features: It can be used for the comparison of non-nested models and its values are highly portable and generalizable. We use this fact to compare predictive performance across a variety of simulated data contexts and also demonstrate qualitative differences in behavior between the IMV and other common indices (e.g., the AIC and RMSEA). We also illustrate the utility of the IMV in empirical applications with data from 89 dichotomous item response datasets. These empirical applications help illustrate how the IMV can be used in practice and substantiate our claims regarding various aspects of model performance. These findings indicate that the IMV may be a useful indicator in psychometrics, especially as it allows for easy comparison of predictions across a variety of contexts.
Temporally Dynamic, Cohort-Varying Value-Added Models
Page GL, San Martín E, Irribarra DT and Bellegem SV
We aim to estimate school value-added dynamically in time. Our principal motivation for doing so is to establish school effectiveness persistence while taking into account the temporal dependence that typically exists in school performance from one year to the next. We propose two methods of incorporating temporal dependence in value-added models. In the first we model the random school effects that are commonly present in value-added models with an auto-regressive process. In the second approach, we incorporate dependence in value-added estimators by modeling the performance of one cohort based on the previous cohort's performance. An identification analysis allows us to make explicit the meaning of the corresponding value-added indicators: based on these meanings, we show that each model is useful for monitoring specific aspects of school persistence. Furthermore, we carefully detail how value-added can be estimated over time. We show through simulations that ignoring temporal dependence when it exists results in diminished efficiency in value-added estimation while incorporating it results in improved estimation (even when temporal dependence is weak). Finally, we illustrate the methodology by considering two cohorts from Chile's national standardized test in mathematics.
Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes
De Boeck P, DeKay ML and Pek J
Wu and Browne (Psychometrika 80(3):571-600, 2015. https://doi.org/10.1007/s11336-015-9451-3 ; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power.
Signal-to-Noise Ratio in Estimating and Testing the Mediation Effect: Structural Equation Modeling versus Path Analysis with Weighted Composites
Yuan KH, Zhang Z and Wang L
Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models are determined by the subjectively assigned scales of the latent variables. Thus, conclusions in existing studies comparing structural equation modeling (SEM) and path analysis with weighted composites (PAWC) on the accuracy and precision of the estimates of the indirect effect in mediation analysis have little validity. Instead of comparing the size on estimates of the indirect effect between SEM and PAWC, this article compares parameter estimates by signal-to-noise ratio (SNR), which does not depend on the metrics of the latent variables once the anchors of the latent variables are determined. Results show that PAWC yields greater SNR than SEM in estimating and testing the indirect effect even when measurement errors exist. In particular, path analysis via factor scores almost always yields greater SNRs than SEM. Mediation analysis with equally weighted composites (EWCs) also more likely yields greater SNRs than SEM. Consequently, PAWC is statistically more efficient and more powerful than SEM in conducting mediation analysis in empirical research. The article also further studies conditions that cause SEM to have smaller SNRs, and results indicate that the advantage of PAWC becomes more obvious when there is a strong relationship between the predictor and the mediator, whereas the size of the prediction error in the mediator adversely affects the performance of the PAWC methodology. Results of a real-data example also support the conclusions.
Polytomous Effectiveness Indicators in Complex Problem-Solving Tasks and Their Applications in Developing Measurement Model
Wang P and Liu H
Recent years have witnessed the emergence of measurement models for analyzing action sequences in computer-based problem-solving interactive tasks. The cutting-edge psychometrics process models require pre-specification of the effectiveness of state transitions often simplifying them into dichotomous indicators. However, the dichotomous effectiveness becomes impractical when dealing with complex tasks that involve multiple optimal paths and numerous state transitions. Building on the concept of problem-solving, we introduce polytomous indicators to assess the effectiveness of problem states and state-to-state transitions . The three-step evaluation method for these two types of indicators is proposed and illustrated across two real problem-solving tasks. We further present a novel psychometrics process model, the sequential response model with polytomous effectiveness indicators (SRM-PEI), which is tailored to encompass a broader range of problem-solving tasks. Monte Carlo simulations indicated that SRM-PEI performed well in the estimation of latent ability and transition tendency parameters across different conditions. Empirical studies conducted on two real tasks supported the better fit of SRM-PEI over previous models such as SRM and SRMM, providing rational and interpretable estimates of latent abilities and transition tendencies through effectiveness indicators. The paper concludes by outlining potential avenues for the further application and enhancement of polytomous effectiveness indicators and SRM-PEI.
Correction: A Diagnostic Facet Status Model (DFSM) for Extracting Instructionally Useful Information from Diagnostic Assessment
Wang C
Parallel Optimal Calibration of Mixed-Format Items for Achievement Tests
Miller F and Fackle-Fornius E
When large achievement tests are conducted regularly, items need to be calibrated before being used as operational items in a test. Methods have been developed to optimally assign pretest items to examinees based on their abilities. Most of these methods, however, are intended for situations where examinees arrive sequentially to be assigned to calibration items. In several calibration tests, examinees take the test simultaneously or in parallel. In this article, we develop an optimal calibration design tailored for such parallel test setups. Our objective is both to investigate the efficiency gain of the method as well as to demonstrate that this method can be implemented in real calibration scenarios. For the latter, we have employed this method to calibrate items for the Swedish national tests in Mathematics. In this case study, like in many real test situations, items are of mixed format and the optimal design method needs to handle that. The method we propose works for mixed-format tests and accounts for varying expected response times. Our investigations show that the proposed method considerably enhances calibration efficiency.
Non-parametric Regression Among Factor Scores: Motivation and Diagnostics for Nonlinear Structural Equation Models
Grønneberg S and Irmer JP
We provide a framework for motivating and diagnosing the functional form in the structural part of nonlinear or linear structural equation models when the measurement model is a correctly specified linear confirmatory factor model. A mathematical population-based analysis provides asymptotic identification results for conditional expectations of a coordinate of an endogenous latent variable given exogenous and possibly other endogenous latent variables, and theoretically well-founded estimates of this conditional expectation are suggested. Simulation studies show that these estimators behave well compared to presently available alternatives. Practically, we recommend the estimator using Bartlett factor scores as input to classical non-parametric regression methods.
A Diagnostic Facet Status Model (DFSM) for Extracting Instructionally Useful Information from Diagnostic Assessment
Wang C
Modern assessment demands, resulting from educational reform efforts, call for strengthening diagnostic testing capabilities to identify not only the understanding of expected learning goals but also related intermediate understandings that are steppingstones on pathways to learning goals. An accurate and nuanced way of interpreting assessment results will allow subsequent instructional actions to be targeted. An appropriate psychometric model is indispensable in this regard. In this study, we developed a new psychometric model, namely, the diagnostic facet status model (DFSM), which belongs to the general class of cognitive diagnostic models (CDM), but with two notable features: (1) it simultaneously models students' target understanding (i.e., goal facet) and intermediate understanding (i.e., intermediate facet); and (2) it models every response option, rather than merely right or wrong responses, so that each incorrect response uniquely contributes to discovering students' facet status. Given that some combination of goal and intermediate facets may be impossible due to facet hierarchical relationships, a regularized expectation-maximization algorithm (REM) was developed for model estimation. A log-penalty was imposed on the mixing proportions to encourage sparsity. As a result, those impermissible latent classes had estimated mixing proportions equal to 0. A heuristic algorithm was proposed to infer a facet map from the estimated permissible classes. A simulation study was conducted to evaluate the performance of REM to recover facet model parameters and to identify permissible latent classes. A real data analysis was provided to show the feasibility of the model.
Extended Asymptotic Identifiability of Nonparametric Item Response Models
He Y
Nonparametric item response models provide a flexible framework in psychological and educational measurements. Douglas (Psychometrika 66(4):531-540, 2001) established asymptotic identifiability for a class of models with nonparametric response functions for long assessments. Nevertheless, the model class examined in Douglas (2001) excludes several popular parametric item response models. This limitation can hinder the applications in which nonparametric and parametric models are compared, such as evaluating model goodness-of-fit. To address this issue, We consider an extended nonparametric model class that encompasses most parametric models and establish asymptotic identifiability. The results bridge the parametric and nonparametric item response models and provide a solid theoretical foundation for the applications of nonparametric item response models for assessments with many items.
Differential Item Functioning via Robust Scaling
Halpin PF
This paper proposes a method for assessing differential item functioning (DIF) in item response theory (IRT) models. The method does not require pre-specification of anchor items, which is its main virtue. It is developed in two main steps: first by showing how DIF can be re-formulated as a problem of outlier detection in IRT-based scaling and then tackling the latter using methods from robust statistics. The proposal is a redescending M-estimator of IRT scaling parameters that is tuned to flag items with DIF at the desired asymptotic type I error rate. Theoretical results describe the efficiency of the estimator in the absence of DIF and its robustness in the presence of DIF. Simulation studies show that the proposed method compares favorably to currently available approaches for DIF detection, and a real data example illustrates its application in a research context where pre-specification of anchor items is infeasible. The focus of the paper is the two-parameter logistic model in two independent groups, with extensions to other settings considered in the conclusion.
Erratum: A Constrained Metropolis-Hastings Robbins-Monro Algorithm for Q Matrix Estimation in DINA Models
Liu CW, Andersson B and Skrondal A
The Crosswise Model for Surveys on Sensitive Topics: A General Framework for Item Selection and Statistical Analysis
Gregori M, De Jong MG and Pieters R
When surveys contain direct questions about sensitive topics, participants may not provide their true answers. Indirect question techniques incentivize truthful answers by concealing participants' responses in various ways. The Crosswise Model aims to do this by pairing a sensitive target item with a non-sensitive baseline item, and only asking participants to indicate whether their responses to the two items are the same or different. Selection of the baseline item is crucial to guarantee participants' perceived and actual privacy and to enable reliable estimates of the sensitive trait. This research makes the following contributions. First, it describes an integrated methodology to select the baseline item, based on conceptual and statistical considerations. The resulting methodology distinguishes four statistical models. Second, it proposes novel Bayesian estimation methods to implement these models. Third, it shows that the new models introduced here improve efficiency over common applications of the Crosswise Model and may relax the required statistical assumptions. These three contributions facilitate applying the methodology in a variety of settings. An empirical application on attitudes toward LGBT issues shows the potential of the Crosswise Model. An interactive app, Python and MATLAB codes support broader adoption of the model.
Comparing Functional Trend and Learning among Groups in Intensive Binary Longitudinal Eye-Tracking Data using By-Variable Smooth Functions of GAMM
Cho SJ, Brown-Schmidt S, Clough S and Duff MC
This paper presents a model specification for group comparisons regarding a functional trend over time within a trial and learning across a series of trials in intensive binary longitudinal eye-tracking data. The functional trend and learning effects are modeled using by-variable smooth functions. This model specification is formulated as a generalized additive mixed model, which allowed for the use of the freely available mgcv package (Wood in Package 'mgcv.' https://cran.r-project.org/web/packages/mgcv/mgcv.pdf , 2023) in R. The model specification was applied to intensive binary longitudinal eye-tracking data, where the questions of interest concern differences between individuals with and without brain injury in their real-time language comprehension and how this affects their learning over time. The results of the simulation study show that the model parameters are recovered well and the by-variable smooth functions are adequately predicted in the same condition as those found in the application.
Learning Bayesian Networks: A Copula Approach for Mixed-Type Data
Castelletti F
Estimating dependence relationships between variables is a crucial issue in many applied domains and in particular psychology. When several variables are entertained, these can be organized into a network which encodes their set of conditional dependence relations. Typically however, the underlying network structure is completely unknown or can be partially drawn only; accordingly it should be learned from the available data, a process known as structure learning. In addition, data arising from social and psychological studies are often of different types, as they can include categorical, discrete and continuous measurements. In this paper, we develop a novel Bayesian methodology for structure learning of directed networks which applies to mixed data, i.e., possibly containing continuous, discrete, ordinal and binary variables simultaneously. Whenever available, our method can easily incorporate known dependence structures among variables represented by paths or edge directions that can be postulated in advance based on the specific problem under consideration. We evaluate the proposed method through extensive simulation studies, with appreciable performances in comparison with current state-of-the-art alternative methods. Finally, we apply our methodology to well-being data from a social survey promoted by the United Nations, and mental health data collected from a cohort of medical students. R code implementing the proposed methodology is available at https://github.com/FedeCastelletti/bayes_networks_mixed_data .
Post-selection Inference in Multiverse Analysis (PIMA): An Inferential Framework Based on the Sign Flipping Score Test
Girardi P, Vesely A, Lakens D, Altoè G, Pastore M, Calcagnì A and Finos L
When analyzing data, researchers make some choices that are either arbitrary, based on subjective beliefs about the data-generating process, or for which equally justifiable alternative choices could have been made. This wide range of data-analytic choices can be abused and has been one of the underlying causes of the replication crisis in several fields. Recently, the introduction of multiverse analysis provides researchers with a method to evaluate the stability of the results across reasonable choices that could be made when analyzing data. Multiverse analysis is confined to a descriptive role, lacking a proper and comprehensive inferential procedure. Recently, specification curve analysis adds an inferential procedure to multiverse analysis, but this approach is limited to simple cases related to the linear model, and only allows researchers to infer whether at least one specification rejects the null hypothesis, but not which specifications should be selected. In this paper, we present a Post-selection Inference approach to Multiverse Analysis (PIMA) which is a flexible and general inferential approach that considers for all possible models, i.e., the multiverse of reasonable analyses. The approach allows for a wide range of data specifications (i.e., preprocessing) and any generalized linear model; it allows testing the null hypothesis that a given predictor is not associated with the outcome, by combining information from all reasonable models of multiverse analysis, and provides strong control of the family-wise error rate allowing researchers to claim that the null hypothesis can be rejected for any specification that shows a significant effect. The inferential proposal is based on a conditional resampling procedure. We formally prove that the Type I error rate is controlled, and compute the statistical power of the test through a simulation study. Finally, we apply the PIMA procedure to the analysis of a real dataset on the self-reported hesitancy for the COronaVIrus Disease 2019 (COVID-19) vaccine before and after the 2020 lockdown in Italy. We conclude with practical recommendations to be considered when implementing the proposed procedure.
Recognize the Value of the Sum Score, Psychometrics' Greatest Accomplishment
Sijtsma K, Ellis JL and Borsboom D
The sum score on a psychological test is, and should continue to be, a tool central in psychometric practice. This position runs counter to several psychometricians' belief that the sum score represents a pre-scientific conception that must be abandoned from psychometrics in favor of latent variables. First, we reiterate that the sum score stochastically orders the latent variable in a wide variety of much-used item response models. In fact, item response theory provides a mathematically based justification for the ordinal use of the sum score. Second, because discussions about the sum score often involve its reliability and estimation methods as well, we show that, based on very general assumptions, classical test theory provides a family of lower bounds several of which are close to the true reliability under reasonable conditions. Finally, we argue that eventually sum scores derive their value from the degree to which they enable predicting practically relevant events and behaviors. None of our discussion is meant to discredit modern measurement models; they have their own merits unattainable for classical test theory, but the latter model provides impressive contributions to psychometrics based on very few assumptions that seem to have become obscured in the past few decades. Their generality and practical usefulness add to the accomplishments of more recent approaches.