Learning-assisted theorem proving with millions of lemmas
Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.
Regular expression order-sorted unification and matching
We extend order-sorted unification by permitting regular expression sorts for variables and in the domains of function symbols. The obtained signature corresponds to a finite bottom-up unranked tree automaton. We prove that regular expression order-sorted (REOS) unification is of type infinitary and decidable. The unification problem presented by us generalizes some known problems, such as, e.g., order-sorted unification for ranked terms, sequence unification, and word unification with regular constraints. Decidability of REOS unification implies that sequence unification with regular hedge language constraints is decidable, generalizing the decidability result of word unification with regular constraints to terms. A sort weakening algorithm helps to construct a minimal complete set of REOS unifiers from the solutions of sequence unification problems. Moreover, we design a complete algorithm for REOS matching, and show that this problem is NP-complete and the corresponding counting problem is #P-complete.
Improved polynomial remainder sequences for Ore polynomials
Polynomial remainder sequences contain the intermediate results of the Euclidean algorithm when applied to (non-)commutative polynomials. The running time of the algorithm is dependent on the size of the coefficients of the remainders. Different ways have been studied to make these as small as possible. The subresultant sequence of two polynomials is a polynomial remainder sequence in which the size of the coefficients is optimal in the generic case, but when taking the input from applications, the coefficients are often larger than necessary. We generalize two improvements of the subresultant sequence to Ore polynomials and derive a new bound for the minimal coefficient size. Our approach also yields a new proof for the results in the commutative case, providing a new point of view on the origin of the extraneous factors of the coefficients.
Trading order for degree in creative telescoping
We analyze the differential equations produced by the method of creative telescoping applied to a hyperexponential term in two variables. We show that equations of low order have high degree, and that higher order equations have lower degree. More precisely, we derive degree bounding formulas which allow to estimate the degree of the output equations from creative telescoping as a function of the order. As an application, we show how the knowledge of these formulas can be used to improve, at least in principle, the performance of creative telescoping implementations, and we deduce bounds on the asymptotic complexity of creative telescoping for hyperexponential terms.
Rational general solutions of planar rational systems of autonomous ODEs
In this paper, we provide an algorithm to compute explicit rational solutions of a rational system of autonomous ordinary differential equations (ODEs) from its rational invariant algebraic curves. The method is based on the proper rational parametrization of these curves and the fact that by linear reparametrizations, we can find the rational solutions of the given system of ODEs. Moreover, if the system has a rational first integral, we can decide whether it has a rational general solution and compute it in the affirmative case.
A difference ring theory for symbolic summation
A summation framework is developed that enhances Karr's difference field approach. It covers not only indefinite nested sums and products in terms of transcendental extensions, but it can treat, e.g., nested products defined over roots of unity. The theory of the so-called [Formula: see text]-extensions is supplemented by algorithms that support the construction of such difference rings automatically and that assist in the task to tackle symbolic summation problems. Algorithms are presented that solve parameterized telescoping equations, and more generally parameterized first-order difference equations, in the given difference ring. As a consequence, one obtains algorithms for the summation paradigms of telescoping and Zeilberger's creative telescoping. With this difference ring theory one gets a rigorous summation machinery that has been applied to numerous challenging problems coming, e.g., from combinatorics and particle physics.