MULTI-TARGET DETECTION WITH ROTATIONS
We consider the multi-target detection problem of estimating a two-dimensional target image from a large noisy measurement image that contains many randomly rotated and translated copies of the target image. Motivated by single-particle cryo-electron microscopy, we focus on the low signal-to-noise regime, where it is difficult to estimate the locations and orientations of the target images in the measurement. Our approach uses autocorrelation analysis to estimate rotationally and translationally invariant features of the target image. We demonstrate that, regardless of the level of noise, our technique can be used to recover the target image when the measurement is sufficiently large.
3D ELECTRICAL IMPEDANCE TOMOGRAPHY RECONSTRUCTIONS FROM SIMULATED ELECTRODE DATA USING DIRECT INVERSION t AND CALDERÓN METHODS
The first numerical implementation of a method in 3D using simulated electrode data is presented. Results are compared to Calderón's method as well as more common TV and smoothness regularization-based methods. The method for EIT is based on tailor-made non-linear Fourier transforms involving the measured current and voltage data. Low-pass filtering in the non-linear Fourier domain is used to stabilize the reconstruction process. In 2D, methods have shown great promise for providing robust real-time absolute and time-difference conductivity reconstructions but have yet to be used on practical electrode data in 3D, until now. Results are presented for simulated data for conductivity and permittivity with disjoint non-radially symmetric targets on spherical domains and noisy voltage data. The 3D and Calderón methods are demonstrated to provide comparable quality to their 2D counterparts, and hold promise for real-time reconstructions due to their fast, non-optimized, computational cost.
CT IMAGE RECONSTRUCTION ON A LOW DIMENSIONAL MANIFOLD
The patch manifold of a natural image has a low dimensional structure and accommodates rich structural information. Inspired by the recent work of the low-dimensional manifold model (LDMM), we apply the LDMM for regularizing X-ray computed tomography (CT) image reconstruction. This proposed method recovers detailed structural information of images, significantly enhancing spatial and contrast resolution of CT images. Both numerically simulated data and clinically experimental data are used to evaluate the proposed method. The comparative studies are also performed over the simultaneous algebraic reconstruction technique (SART) incorporated the total variation (TV) regularization to demonstrate the merits of the proposed method. Results indicate that the LDMM-based method enables a more accurate image reconstruction with high fidelity and contrast resolution.
EMPIRICAL AVERAGE-CASE RELATION BETWEEN UNDERSAMPLING AND SPARSITY IN X-RAY CT
In X-ray computed tomography (CT) it is generally acknowledged that reconstruction methods exploiting image sparsity allow reconstruction from a significantly reduced number of projections. The use of such reconstruction methods is inspired by recent progress in compressed sensing (CS). However, the CS framework provides neither guarantees of accurate CT reconstruction, nor any relation between sparsity and a sufficient number of measurements for recovery, i.e., perfect reconstruction from noise-free data. We consider reconstruction through 1-norm minimization, as proposed in CS, from data obtained using a standard CT fan-beam sampling pattern. In empirical simulation studies we establish quantitatively a relation between the image sparsity and the sufficient number of measurements for recovery within image classes motivated by tomographic applications. We show empirically that the specific relation depends on the image class and in many cases exhibits a sharp phase transition as seen in CS, i.e., same-sparsity images require the same number of projections for recovery. Finally we demonstrate that the relation holds independently of image size and is robust to small amounts of additive Gaussian white noise.
A Real-time D-bar Algorithm for 2-D Electrical Impedance Tomography Data
The aim of this paper is to show the feasibility of the D-bar method for real-time 2-D EIT reconstructions. A fast implementation of the D-bar method for reconstructing conductivity changes on a 2-D chest-shaped domain is described. Cross-sectional difference images from the chest of a healthy human subject are presented, demonstrating what can be achieved in real time. The images constitute the first D-bar images from EIT data on a human subject collected on a pairwise current injection system.
HARDI DATA DENOISING USING VECTORIAL TOTAL VARIATION AND LOGARITHMIC BARRIER
In this work, we wish to denoise HARDI (High Angular Resolution Diffusion Imaging) data arising in medical brain imaging. Diffusion imaging is a relatively new and powerful method to measure the three-dimensional profile of water diffusion at each point in the brain. These images can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber integrity and connectivity. HARDI data is a powerful new extension of diffusion imaging, which goes beyond the diffusion tensor imaging (DTI) model: mathematically, intensity data is given at every voxel and at any direction on the sphere. Unfortunately, HARDI data is usually highly contaminated with noise, depending on the b-value which is a tuning parameter pre-selected to collect the data. Larger b-values help to collect more accurate information in terms of measuring diffusivity, but more noise is generated by many factors as well. So large b-values are preferred, if we can satisfactorily reduce the noise without losing the data structure. Here we propose two variational methods to denoise HARDI data. The first one directly denoises the collected data S, while the second one denoises the so-called sADC (spherical Apparent Diffusion Coefficient), a field of radial functions derived from the data. These two quantities are related by an equation of the form S = S(S)exp (-b · sADC) (in the noise-free case). By applying these two different models, we will be able to determine which quantity will most accurately preserve data structure after denoising. The theoretical analysis of the proposed models is presented, together with experimental results and comparisons for denoising synthetic and real HARDI data.
VARIATIONAL DENOISING OF DIFFUSION WEIGHTED MRI
In this paper, we present a novel variational formulation for restoring high angular resolution diffusion imaging (HARDI) data. The restoration formulation involves smoothing signal measurements over the spherical domain and across the 3D image lattice. The regularization across the lattice is achieved using a total variation (TV) norm based scheme, while the finite element method (FEM) was employed to smooth the data on the sphere at each lattice point using first and second order smoothness constraints. Examples are presented to show the performance of the HARDI data restoration scheme and its effect on fiber direction computation on synthetic data, as well as on real data sets collected from excised rat brain and spinal cord.
A GREEDY METHOD FOR RECONSTRUCTING POLYCRYSTALS FROM THREE-DIMENSIONAL X-RAY DIFFRACTION DATA
An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which the experimentally measured value most exceeds the simulated one is identified. This difference can only be reduced by changing the current estimate at a location from a relatively small subset of all possible locations in the estimate and, at each such location, an increase at the identified pixel can only be achieved by changing the orientation in only a few possible ways. The method selects the location/orientation pair indicated as best by a function that measures data consistency combined with prior information on orientation maps. The superiority of the method to a previously published forward projection Monte Carlo optimization is demonstrated on simulated data.