FLUID DYNAMICS RESEARCH

Aeroacoustic source prediction using material surfaces bounding the flow
McPhail MJ and Krane MH
This article presents an extension of Liepmann's characterization of an aeroacoustic source in terms of the motion of a bounding surface containing the source region. Rather than using an arbitrary surface, we express the problem in terms of bounding material surfaces, identified by Lagrangian Coherent Structures (LCS), which demarcate flow into regions with distinct dynamics. The sound generation of the flow is written in terms of the motion of these material surfaces using the Kirchhoff integral equation, so that the flow noise problem now appears like that of a deforming body. This approach provides a natural connection between the flow topology, as revealed through LCS analysis, and sound generation mechanisms. As examples, we examine two-dimensional cases of co-rotating vortices and leap-frogging vortex pairs and compare estimated sound sources to vortex sound theory.
Cycle-to-cycle flow variations in a square duct with a symmetrically oscillating constriction
Sherman E, Lambert L, White B, Krane MH and Wei T
Spatially and temporally resolved Digital Particle Image Velocimetry (DPIV) measurements are presented of flow complexities in a nominally two-dimensional, symmetric, duct with an oscillating constriction. The motivation for this research lies in advancing the state-of-the-art in applying integral control volume analysis to modeling unsteady internal flows. The specific target is acoustic modeling of human phonation. The integral mass and momentum equations are directly coupled to the acoustic equations and provide quantitative insight into acoustic source strengths in addition to the dynamics of the fluid-structure interactions in the glottis. In this study, a square cross-section duct was constructed with symmetric, computer controlled, oscillating constrictions that incorporate both rocking as well as oscillatory open/close motions. Experiments were run in a free-surface water tunnel over a Strouhal number range, based on maximum jet speed and model length, of 0.012 - 0.048, for a fixed Reynolds number, based on maximum gap opening and maximum jet speed, of 8000. In this study, the constriction motions were continuous with one open-close cycle immediately following another. While the model and its motions were nominally two-dimensional and symmetric, flow asymmetries and oscillation frequency dependent cycle-to-cycle variations were observed. These are examined in the context of terms in the integral conservation equations.
Dynamic Mode Decomposition of Fontan Hemodynamics in an Idealized Total Cavopulmonary Connection
Delorme YT, Kerlo AE, Anupindi K, Rodefeld MD and Frankel SH
Univentricular heart disease is the leading cause of death from any birth defect in the first year of life. Typically, patients have to undergo three open heart surgical procedures within the first few years of their lives to eventually directly connect the superior and inferior vena cavae to the left and right pulmonary arteries forming the Total Cavopulmonary Connection or TCPC. The end result is a weak circulation where the single working ventricle pumps oxygenated blood to the body and de-oxygenated blood flows passively through the TCPC into the lungs. The fluid dynamics of the TCPC junction involve confined impinging jets resulting in a highly unstable flow, significant mechanical energy dissipation, and undesirable pressure loss. Understanding and predicting such flows is important for improving the surgical procedure and for the design of mechanical cavopulmonary assist devices. In this study, Dynamic Mode Decomposition (DMD) is used to analyze previously obtained Stereoscopic Particle Imaging Velocimetry (SPIV) data and Large Eddy Simulation (LES) results for an idealized TCPC. Analysis of the DMD modes from the SPIV and LES serve to both highlight the unsteady vortical dynamics and the qualitative agreement between measurements and simulations.
ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS
Howe MS and McGowan RS
An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region.
Elastic capsule deformation in general irrotational linear flows
Szatmary AC and Eggleton CD
Knowledge of the response of elastic capsules to imposed fluid flow is necessary for predicting deformation and motion of biological cells and synthetic capsules in microfluidic devices and in the microcirculation. Capsules have been studied in shear, planar extensional, and axisymmetric extensional flows. Here, the flow gradient matrix of a general irrotational linear flow is characterized by two parameters, its strain rate, defined as the maximum of the principal strain rates, and by a new term, q, the difference in the two lesser principal strain rates, scaled by the maximum principal strain rate; this characterization is valid for ellipsoids in irrotational linear flow, and it gives good results for spheres in general linear flows at low capillary numbers. We demonstrate that deformable non-spherical particles align with the principal axes of an imposed irrotational flow. Thus, it is most practical to model deformation of non-spherical particles already aligned with the flow, rather than considering each arbitrary orientation. Capsule deformation was modeled for a sphere, a prolate spheroid, and an oblate spheroid, subjected to combinations of uniaxial, biaxial, and planar extensional flows; modeling was performed using the immersed boundary method. The time response of each capsule to each flow was found, as were the steady-state deformation factor, mean strain energy, and surface area. For a given capillary number, planar flows led to more deformation than uniaxial or biaxial extensional flows. Capsule behavior in all cases was bounded by the response of capsules to uniaxial, biaxial, and planar extensional flow.