Autonomous underwater glider observations in southern Lake Ontario and Niagara River plume
The nearshore areas of the Laurentian Great Lakes provide valuable ecosystem services including habitat for a variety of species and water for surrounding communities. Recent declines in nearshore water quality have increased the need for understanding the connectivity between nearshore and offshore areas; however, observing water quality variability across the dynamic nearshore to offshore transition zone poses logistical challenges for traditional observing systems. Here we evaluate cross-shore and along-shore water quality gradients using observations from two three-week deployments of a Slocum autonomous glider in southern Lake Ontario. The glider was deployed between the Niagara River mouth and Rochester, NY during early and late summer 2018, and each deployment resulted in over 3000 vertical profiles of the water column, and several transects between 2 km and 20 km from shore. In early summer, the cross-shore chlorophyll gradient was characterized by highest values just below the surface, at the frontal zone between weakly stratified conditions closer to shore and unstratified conditions offshore. In late summer, stratified conditions extended across the entire survey area. The depth of the thermocline was deeper and chlorophyll values were lower within 10 km of shore than offshore, where the highest chlorophyll values were observed in a distinct layer below the thermocline. In both early and late summer, the frontal boundary indicated by the cross-shore chlorophyll gradient was located below the surface and well offshore of what is typically considered the nearshore zone but was within the width of the coastal boundary layer. The high-resolution glider observations provide a detailed view of patterns of variability across a dynamic coastal zone and pinpoint the cross-shore frontal boundary that may be important for biologists to differentiate biological communities.
How to learn to stop worrying and love environmental DNA monitoring
Environmental DNA is one of the most promising new tools in the aquatic biodiversity monitoring toolkit, with particular appeal for applications requiring assessment of target taxa at very low population densities. And yet there persists considerable anxiety within the management community regarding the appropriateness of environmental DNA monitoring for certain tasks and the degree to which environmental DNA methods can deliver information relevant to management needs. This brief perspective piece is an attempt to address that anxiety by offering some advice on how end-users might best approach these new technologies. I do not here review recent developments in environmental DNA science, but rather I explore ways in which managers and decision-makers might become more comfortable adopting environmental DNA tools-or choosing not to adopt them, should circumstances so dictate. I attempt to contextualize the central challenges associated with acceptance of environmental DNA detection by contrasting them with traditional "catch-and-look" approaches to biodiversity monitoring. These considerations lead me to recommend the cultivation of four "virtues," attitudes that can be brought into engagement with environmental DNA surveillance technologies that I hope will increase the likelihood that those engagements will be positive and that the future development and application of environmental DNA tools will further the cause of wise management.
Phytoplankton composition and microcystin concentrations in open and closed bays of Lake Victoria, Tanzania
This study was carried out in order to investigate the spatial variation of algal toxin (microcystin) concentrations along the shoreline of Lake Victoria. A total of 16 nearshore stations differing in connectivity to the main lake basin were categorized as either closed bays (ratio of bay area to bay opening < 1) or open bays (ratio ≥ 1) and sampled during November and December 2009. Water samples were analyzed for total phosphorus (TP), chlorophyll , phytoplankton community composition and concentrations of microcystin (MC). Open and closed bays were significantly different for phytoplankton abundance and composition: Average phytoplankton biovolume was higher for closed bays (45 mm L ± 11 SE) than open bays (5 ± 2 mm L). Cyanobacterial biovolume (mainly spp. spp. and spp.) also was significantly higher in closed bays (82 ± 9% of total biovolume) than in open bays (44 ± 5%). In contrast, diatom biovolume was lower in closed bays (7 ± 1%) than in open bays (36 ± 6%). MCs were found only among sites from closed bays and concentrations ranged from 0.4 to 13 μg L MC-LR equiv. and coincided with high abundance of spp. It is concluded that the level of water exchange from individual bays to the main basin is an important factor influencing eutrophication and microcystin production in nearshore habitats of Lake Victoria.