Micro-physiological system of human lung: The current status and application to drug discovery
Various attempts have been made to elucidate the mechanisms of human lung development, its physiological functions, and diseases, in the hope of new drug discovery. Recent technological advancements in experimental animals, cell culture, gene editing, and analytical methods have provided new insights and therapeutic strategies. However, the results obtained from animal experiments are often inconsistent with those obtained from human data because of reproducibility issues caused by structural and physiological differences between mice and humans. In addition, it is not possible to accurately reproduce the internal environment of the human lung structure using conventional two-dimensional (2D) or three-dimensional (3D) cell culture methods. As a result, the micro-physiological system (MPS) technology, such as "lung-on-a-chip" that can culture human cells in a state close to human body environment have been developed, and its applications to disease models, toxicological studies, and drug discovery are accelerated worldwide. Here, we focus on the mimetics of the lung, including "lung-on-a-chip" technology, and review their recent progress, achievements and challenges. Finally, we discuss the role of these chips in drug discovery for refractory lung diseases.
Development and application of 3D cardiac tissues derived from human pluripotent stem cells
Recently human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate drug responses for cardiotoxicity testing and disease modeling. Moreover, three-dimensional (3D) cardiac models, such as engineered heart tissues (EHTs) developed by bioengineering approaches, and cardiac spheroids (CSs) formed by spherical aggregation of hPSC-CMs, have been established as useful tools for drug discovery and transplantation. These 3D models overcome many of the shortcomings of conventional 2D hPSC-CMs, such as immaturity of the cells. Cardiac organoids (COs), like other organs, have also been studied to reproduce structures that resemble a heart in vivo more closely and optimize various culture conditions. Heart-on-a-chip (HoC) developed by a microfluidic chip-based technology that enables real-time monitoring of contraction and electrical activity, provides multifaceted information that is essential for capturing natural tissue development in vivo. Recently, 3D experimental systems have been developed to study organ interactions in vitro. This review aims to discuss the developments and advancements of hPSC-CMs and 3D cardiac tissues.
Understanding mechanisms of negative food effect for voclosporin using physiologically based pharmacokinetic modeling
Negative food effect refers to a reduction in bioavailability, when a drug is taken with food. Voclosporin, a highly lipophilic cyclic peptide drug for treatment of active lupus nephritis, has shown negative food effect in clinical trials. Here, the cause of the negative food effect of voclosporin was investigated using physiologically based pharmacokinetic (PBPK) modeling to understand the mechanism responsible for oral absorption of voclosporin. Voclosporin is a substrate for P-glycoprotein and CYP3A4, and it has been evaluated for intestinal membrane permeability in human induced pluripotent stem cell-derived intestinal epithelial cells (hiPSC-IECs). The membrane permeability in hiPSC-IECs is integrated into the PBPK model for simulating permeability accurately. The PBPK model simulated the systemic PK profile in fasted state in human. Then, the PBPK model with in vitro adsorption of voclosporin onto food simulated the systemic PK profile in fed state for food effect. In addition, the PBPK model for rats also simulated the plasma profile of voclosporin for the food effect. These results suggest that a possible cause of the negative food effect of voclosporin is the adsorption of voclosporin to food in gastrointestinal tract. These approaches could facilitate understanding of the mechanisms responsible for oral absorption of cyclic peptides.
Clinical pharmacokinetic characteristics of Jaktinib in subjects with hepatic impairment in a phase I trial
Jaktinib is a novel Janus kinase (JAK) inhibitor, and a phase I clinical trial of single-dose Jaktinib was conducted in a population of subjects with hepatic impairment to assess the safety, tolerability, and pharmacokinetic characteristics of Jaktinib. The patients were administered orally with 100 mg Jaktinib on day 1 in all the mild hepatic impairment group (mild group, n = 8), moderate hepatic impairment group (moderate group, n = 8) and normal hepatic function group (normal group, n = 8), and the blood samples were collected for later analysis. The mild to moderate hepatic impairment affected the metabolism of Jaktinib, which may lead to accumulation of original Jaktinib. The pharmacokinetic characteristics of the metabolites (ZG0244 and ZG0245) of Jaktinib were also analyzed. The exposure of Jaktinib is approximately 2-fold in patients with mild and moderate hepatic impairment than normal hepatic function. No serious adverse events occurred. In summary, a dosage reduction is recommended for patients with mild or moderate hepatic impairment. Further investigations for the dose adjustment in mild/moderate hepatic impairment will be considered. Trial registration number: NCT04993404.
Corrigendum to "Establishment of human intestinal organoids derived from commercially available cryopreserved intestinal epithelium and evaluation for pharmacokinetic study" [Drug Metabol Pharmacokinet 53 (2024) 100532]
Advancements in Microphysiological systems: Exploring organoids and organ-on-a-chip technologies in drug development -focus on pharmacokinetics related organs
This study explored the evolving landscape of Microphysiological Systems (MPS), with a focus on organoids and organ-on-a-chip (OoC) technologies, which are promising alternatives to animal testing in drug discovery. MPS technology offers in vitro models with high physiological relevance, simulating organ function for pharmacokinetic studies. Organoids composed of 3D cell aggregates and OoCs mimicking in vivo environments based on microfluidic platforms represent the forefront of MPS. This paper provides a comprehensive overview of their application in studying the gut, liver, and kidney and their challenges in becoming reliable alternatives to in vivo models. Although MPS technology is not yet fully comparable to in vivo systems, its continued development, aided by in silico, automation, and AI approaches, is anticipated to bring about further advancements. Collaboration across multiple disciplines and ongoing regulatory discussions will be crucial in driving MPS toward practical and ethical applications in biomedical research and drug development.
Development of intestinal organoids and microphysiological systems and their application to drug discovery
The intestines are an important organ with a variety of functions. For drug discovery research, experimental animals and Caco-2 cells derived from a human colon carcinoma may be used to evaluate the absorption and safety of orally administered drugs. These systems have issues, such as species differences with humans in experimental animals, variations in gene expression patterns, very low drug-metabolizing activities in Caco-2 cells, and the recent trend toward reduced animal testing. Thus, there is a need for new evaluation systems. Intestinal organoid technology and microphysiological systems (MPS) have attracted attention as novel evaluation systems for predicting drug disposition, safety, and efficacy in humans in vitro. Intestinal organoids are three-dimensional structures that contain a variety of intestinal cells. They also contain crypt-villus structures similar to those of living bodies. Using MPS, it is possible to improve the functionality of cells and evaluate the linkage and crosstalk between the intestine and the liver. These systems are expected to be powerful tools for drug discovery research to predict efficacy and toxicity in humans. This review outlines the current status of intestinal organoids and MPS studies.
Global expansion of microphysiological systems (MPS) and Japan's initiatives: Innovation in pharmaceutical development and path to regulatory acceptance
Microphysiological systems (MPS) are gaining global attention as potential game-changers in pharmaceutical development. Since 2013, MPS suppliers from university laboratories in the United States and Europe have competed to develop these devices. After the development phase, the focus shifted to the accumulation of applications using MPS for pharmaceutical companies and end users. In Japan, the AMED-MPS project was launched in 2017, and since then, several MPS devices have been marketed by project participated suppliers. Initially, while Japanese pharmaceutical companies adopted foreign products, they also exhibited interest in domestically produced MPS devices. The utilization of new approach methodologies, including MPS, is expanding in the field of chemical substances risk assessment, and the Organization for Economic Co-operation and Development test guidelines are expected to adopt in vitro evaluation systems as alternatives to animal testing. This publication reviews global and Japanese trends surrounding MPS and outlines activities aimed at the regulatory acceptance of MPS as evaluation systems for medical drugs and chemicals.
Population pharmacokinetic analysis of sirolimus in Japanese pediatric and adult subjects receiving tablet or granule formulations
A population pharmacokinetic (PopPK) analysis was conducted using data from 215 Japanese administered oral sirolimus (tablet and granule) including healthy subjects and patients with intractable vascular anomalies and other diseases. The analysis included neonates, infants, and adults, and identified covariates that influence sirolimus pharmacokinetics (PK). The final model was used to predict sirolimus trough concentrations for various dosing regimens and covariates of interest. The results showed that sirolimus trough concentrations were predicted to increase with higher levels of hemoglobin, and that the granule formulation had a 1.23-fold higher exposure than the tablet formulation. Coadministration of CYP3A4 inducers was found to decrease trough concentrations by 54 %. The PK simulations showed that administration of the granule formulation at doses of 0.02, 0.04, 0.06, and 0.08 mg/kg/day in ages <3 months, 3 to <6 months, 6 to <12 months, and ≥1 year, respectively, resulted in >70 % target attainment within the therapeutic trough concentration range (5-15 ng/mL). In conclusion, incorporation of time-varying covariates (body weight and age) into the PopPK model appropriately predicted sirolimus concentrations in Japanese subjects from infants to adult sub-populations. This PopPK model would therefore be able to provide a reference for clinical individualization of sirolimus dosing.
Human brain organoids for understanding substance use disorders
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding its neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUD using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUD in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
In vitro hydrolysis of areca nut xenobiotics in human liver
Areca nut (AN) is a substance of abuse consumed by millions worldwide, in spite of established oral and systemic toxicities associated with its use. Previous research demonstrates methyl ester alkaloids in the AN, such as arecoline and guvacoline, exhibit mood-altering and toxicological effects. Nonetheless, their metabolism has not been fully elucidated in humans. In the present study, an HPLC-UV bioanalytical method was developed to evaluate the hydrolytic kinetics and clearance rates of arecoline and guvacoline in human liver microsomes (HLM) and cytosol (HLC). The bioassay was capable of quantifying arecoline and guvacoline (and carboxylate metabolites arecaidine and guvacine, respectively) with good sensitivity, accuracy, and precision. Kinetics of arecoline and guvacoline hydrolysis best followed the Michaelis-Menten model. Apparent intrinsic clearance (Cl) of arecoline was 57.8 ml/min/kg in HLM and 11.6 mL/min/kg in HLC, a 5-fold difference. Unexpectedly, guvacoline was dramatically less hydrolyzed than arecoline in both HLM and HLC, with Cl estimates of 0.654 ml/min/kg and 0.466 ml/min/kg, respectively. These results demonstrate, for the first time, arecoline undergoes significant hydrolysis with high clearance rates in the liver. Furthermore, differential tissue metabolic rates and utilization of specific esterase inhibitors unequivocally demonstrated arecoline is a substrate for CES1 and not CES2.
Population pharmacokinetic and exposure-response analysis to support a dosing regimen of CPX-351 (NS-87) in Japanese adult and pediatric patients with untreated high-risk acute myeloid leukemia
CPX-351 (NS-87; Vyxeos®) has a characteristic liposomal formulation and contains cytarabine and daunorubicin at a 5:1 molar ratio, which demonstrates synergistic activity in both in vitro and in vivo animal models. It has been approved in several countries for the treatment of newly diagnosed, therapy-related acute myeloid leukemia (t-AML) or AML with myelodysplasia-related changes (AML-MRC). Since there are very few Asian patients, especially Japanese adult and pediatric patients, only a small clinical study has been conducted in Japanese adult patients and no study in Japanese pediatric patients. Therefore, we need to continue collecting data to ensure efficacy, especially in Japan. The objectives of this study were to evaluate the exposure and efficacy of CPX-351 in adult and pediatric Japanese patients. For these purposes, population pharmacokinetic and exposure-response analysis was conducted based on the established model/analysis using non-Japanese data by incorporating the newly obtained results of a Japanese clinical trial. No significant differences in pharmacokinetic exposure and efficacy were observed between non-Japanese adult patients and Japanese adult or pediatric patients. This information supports CPX-351 as a treatment option for untreated Japanese t-AML/AML-MRC patients on the basis of efficacy and safety when referred to the evidence from non-Japanese subjects.
Population pharmacokinetics of blonanserin in Japanese adolescent and adult patients with schizophrenia
The second-generation antipsychotic blonanserin is a highly selective, full antagonist of dopamine D and D and serotonin 5-HT receptors. It is currently prescribed for patients with schizophrenia in Japan. We aimed to develop a population pharmacokinetic model of oral blonanserin, including data from 12 to 77 years old patients, to assess the covariates that influence blonanserin pharmacokinetics and evaluate appropriate dosage regimens in adolescents versus adults. The population pharmacokinetic analysis was conducted using plasma concentrations in 132 Japanese adolescent and 135 adult patients with schizophrenia (including 20 older adults [≥65 years] patients), and 49 healthy adults. The blonanserin population pharmacokinetics was described using a two-compartment model with first-order absorption with lag time. Relative bioavailability decreased in fasted conditions and with concomitant CYP3A4 inducer use. Apparent clearance in older adult was lower than adult and adolescent. Simulation revealed similar plasma exposures between adolescents and adults and slightly larger in older adults. Bayesian estimates of apparent clearance suggested no effects of age in adolescents between 12 and 18 years old. Together, these results reveal the pharmacokinetic characteristics of blonanserin over a wide age range and support the appropriateness of the approved dosing regimen for adolescent patients with schizophrenia in Japan.
The refined CYP2B6-Template system for studies of its ligand metabolisms
The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system. From their placements on the refined Template and rules for interaction modes, verifications of good and poor substrates, regio- and stereo-selectivities, and inhibitory interaction became faithfully available for these ligands, in which all the chemicals tested in the previous study were included. From the comparison of substrate specificities of human CYP2B6 and rat CYP2B1, size differences of one of the enzyme residues, Shelf, were suggested as a cause of their distinct catalyses. The refined CYP2B6-Template system will thus offer more reliable estimations of this human CYP catalyses toward ligands of diverse structures, together with their deciphering information to lead to judgments of metabolisms.
Organoids and microphysiological systems for pharmaceutical research of viral respiratory infections
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections. Advanced disease modeling using organoids, self-organized three-dimensional (3D) cell culture models derived from stem cells, or MPS, models for culturing multiple cell types in a microfluidic device and capable of recapitulating a physiological 3D dynamic environment, can accurately replicate the complex functions of respiratory organs, thus making them valuable tools for elucidating the organ damages caused by viral respiratory infections and evaluating the efficacy of candidate drugs against them. Recently, a wide range of organoids and MPS have been developed to model the complex pathophysiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and assess therapeutic drugs. In this review, we evaluate the latest pharmaceutical research on coronavirus disease 2019 (COVID-19) that utilizes organoids and MPS and discuss future perspectives of their applications.
Effect of obesity on pharmacokinetics of transdermal fentanyl: Single-center retrospective study and animal study
A retrospective study and an animal study were conducted to investigate factors affecting the transdermal fentanyl dose to achieve adequate pain relief in patients switched from other opioids. In the retrospective study, patient factors were included as gender, age, body mass index (BMI), and serum albumin concentration. In obese (BMI ≥25) patients, the post-titration dose of transdermal fentanyl was significantly lower than in normal (BMI 18.5-25) patients despite the initial dose was the same. To support this unexpected finding, fentanyl was administered intravenously and transdermally to Zucker (fa/fa) rats as an obese model and Zucker (+/+) rats as a control. No difference in systemic clearance (CL) after intravenous administration was observed between the two groups. However, transdermal bioavailability (F) and fentanyl release ratio from the formulation (F) were significantly increased in Zucker (fa/fa) rats compared to Zucker (+/+) rats. Skin availability (F), calculated as F divided by F, was also significantly increased. These results indicated that obesity should be considered as a factor in the titration of transdermal fentanyl dose.
Opportunities for microphysiological systems from the view of Japanese industries
Regulatory authorities and pharmaceutical companies in Europe and the United States have paid attention to microphysiological systems (MPS), and various consortia and academic societies have been established. They are actively working toward their implementation under individual company or regulatory acceptance. In Japan, some AMED projects, academic societies, and consortia have also been established and activities have begun. This article focuses on domestic and international trends regarding MPS, especially on Japanese industries related to MPS, and describes the current status, challenges, and prospects of Japanese pharmaceutical companies, CROs, Food company, and MPS-related product development companies including the results of a survey conducted by CSAHi-MPS, an industrial MPS consortium in Japan.
Characteristics of membrane transport, metabolism, and target protein binding of cyclic depsipeptide destruxin E in HeLa cells
Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 μM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.
Characterization of plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders
Factors that determine clinical responses to vonoprazan remain unknown. This study aimed to characterize plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders. Fifty-three patients who were receiving vonoprazan for at least 3 days were enrolled. Blood samples for determination of plasma vonoprazan and its metabolite (ODA-VP) were obtained. Plasma 4β-hydroxycholesterol (4β-OHC), CYP3A5 and ABCB1 genotypes, and plasma gastrin were determined. CYP3A recognition for vonoprazan was evaluated using recombinant CYP3A proteins. Plasma vonoprazan levels exhibited a large interindividual variation. The absolute plasma concentration of vonoprazan was correlated with its dose-normalized value, and had a positive correlation with the inverse value of its metabolic ratio. A negative correlation was observed between plasma vonoprazan and 4β-OHC levels. The metabolic ratio of vonoprazan was positively correlated with the plasma 4β-OHC level. Genetic variants of CYP3A5 and ABCB1 were not associated with the plasma concentration of vonoprazan and its metabolic ratio. Possible saturated metabolism of vonoprazan to its major metabolite was observed at a therapeutic dose. Although the CYP3A5 genotype did not alter plasma vonoprazan, CYP3A activity based on plasma 4β-OHC partially explained the variation in plasma vonoprazan in patients with digestive system disorders.
Physiologically based pharmacokinetic modeling of CYP2C8 substrate rosiglitazone and its metabolite to predict metabolic drug-drug interaction
Rosiglitazone is an activator of nuclear peroxisome proliferator-activated (PPAR) receptor gamma used in the treatment of type 2 diabetes mellitus. The elimination of rosiglitazone occurs mainly via metabolism, with major contribution by enzyme cytochrome P450 (CYP) 2C8. Primary routes of rosiglitazone metabolism are N-demethylation and hydroxylation. Modulation of CYP2C8 activity by co-administered drugs lead to prominent changes in the exposure of rosiglitazone and its metabolites. Here, we attempt to develop mechanistic parent-metabolite physiologically based pharmacokinetic (PBPK) model for rosiglitazone. Our goal is to predict potential drug-drug interaction (DDI) and consequent changes in metabolite N-desmethyl rosiglitazone exposure. The PBPK modeling was performed in the PKSim® software using clinical pharmacokinetics data from literature. The contribution to N-desmethyl rosiglitazone formation by CYP2C8 was delineated using vitro metabolite formation rates from recombinant enzyme system. Developed model was verified for prediction of rosiglitazone DDI potential and its metabolite exposure based on observed clinical DDI studies. Developed model exhibited good predictive performance both for rosiglitazone and N-desmethyl rosiglitazone respectively, evaluated based on commonly acceptable criteria. In conclusion, developed model helps with prediction of CYP2C8 DDI using rosiglitazone as a substrate, as well as changes in metabolite exposure. In vitro data for metabolite formation can be successfully utilized to translate to in vivo conditions.
Human brain organoids for understanding substance use disorders
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.