Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules
High power, high radiance, broadband light sources emitting in the 2.0-2.5 μm wavelength range are important for optical sensing of biomolecules such as glucose in aqueous solutions. Here we demonstrate and analyze superluminescent diodes with output centered at 2.4 μm (range ~2.2-2.5 μm) from GaInAsSb/AlGaAsSb quantum wells in a separate confinement structure. Pulsed wave output of 1 mW (38 kW/cm/sr) is achieved at room temperature for 40μm × 2mm devices. Superluminescence is evidenced in superlinear increase in emission, spectral narrowing, and angular narrowing of light output with increasing current injection. Optical output is analyzed and modeled with rate equations. Potential routes for future improvements are explored, such as additional Auger suppression and photonic mode engineering.
The Quantum Hall Effect in the Era of the New SI
The quantum Hall effect (QHE), and devices reliant on it, will continue to serve as the foundation of the ohm while also expanding its territory into other SI derived units. The foundation, evolution, and significance of all of these devices exhibiting some form of the QHE will be described in the context of optimizing future electrical resistance standards. As the world adapts to using the quantum SI, it remains essential that the global metrology community pushes forth and continues to innovate and produce new technologies for disseminating the ohm and other electrical units.