Erosion of lunar surface rocks by impact processes: A synthesis
This report summarizes observations of returned Apollo rocks and soils, lunar surface images, orbital observations, and experimental impacts related to the erosion and comminution of rocks exposed at the lunar surface. The objective is to develop rigorous criteria for the recognition of impact processes that assist in distinguishing "impact" from other potential erosional processes, particularly thermal fatigue, which has recently been advocated specifically for asteroids. Impact in rock is a process that is centrally to bilaterally symmetric, resulting in highly crushed, high-albedo, quasicircular depressions surrounded by volumetrically prominent spall zones. Containing central glass-lined pits in many cases, such features provide distinctive evidence of impact that is not duplicated by any other process. Additional evidence of impact can include radial fracture systems in the target that emanate from the impact point and clusters of fragments that attest to the lateral acceleration and displacement of each one. It is also important to note that impact produces a wide variety of fragment shapes that might totally overlap with those produced by thermal fatigue; we consider fragment shape to be an unreliable criterion for either process. The stochastic nature of the impact process will result in exponential survival times of surface rocks; that is, rock destruction initially is relatively efficient, but it is followed by ever increasing surface times for the last rock remnants. Thermal fatigue, however, is essentially a thermal-equilibrium process. The corresponding distribution of survival times should be much more peaked in comparison, presumably Gaussian, and diagnostically different from that due to impact. Given the abundance of evidence that has been gleaned from Apollo rocks and soils, it is surprising how little has been learned about the impact process from the of rocks and boulders taken by the astronauts on the lunar surface. This suggests that it will require rocks and soils returned from asteroids to evaluate the relative roles of thermal versus impact-triggered rock erosion, particularly when both processes are likely to be operating.
Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment
A survey around a recently-fueled MMRTG in the terrestrial atmosphere finds a warm air plume with a characteristic updraft velocity of ~1 m/s and a temperature rise of ~4 K. Additionally, a roughly hundredfold enhancement in ion density to ~70,000/cm in the vicinity (<~1 m) of the generator was observed: air electrical conductivity was measured to be ~10 S/m. No evidence of ozone production was detected. These observations inform the electrical charging environment and possible local perturbation to meteorological measurements on Mars or Titan on MMRTG-powered landers or rovers. On Mars, the effects of any electrical conductivity enhancement are likely small, but on Titan they may be significant.
Long-duration Venus lander for seismic and atmospheric science
An exciting and novel science mission concept called Seismic and Atmospheric Exploration of Venus (SAEVe) has been developed which uses high-temperature electronics to enable a three-order magnitude increase in expected surface life (120 Earth days) over what has been achieved to date. This enables study of long-term, variable phenomena such as the seismicity of Venus and near surface weather, near surface energy balance, and atmospheric chemical composition. SAEVe also serves as a critical pathfinder for more sophisticated landers in the future. For example, first order seismic measurements by SAEVe will allow future missions to deliver better seismometers and systems to support the yet unknown frequency and magnitude of Venus events. SAEVe is focused on science that can be realized with low data volume instruments and will most benefit from temporal operations. The entire mission architecture and operations maximize science while minimizing energy usage and physical size and mass. The entire SAEVe system including its protective entry system is estimated to be around 45 kg and approximately 0.6 m diameter. These features allow SAEVe to be relatively cost effective and be easily integrated onto a Venus orbiter mission. The technologies needed to implement SAEVe are currently in development by several funded activities. Component and system level work is ongoing under NASA's Long Lived Insitu Solar System Explorer (LLISSE) project and the HOTTech program. . LLISSE, is a NASA project to develop a small Venus lander that will operate on the surface of Venus for 60 days and measure variations in meteorology, radiance, and atmospheric chemistry. LLISSE is developing a full-function engineering model of a Venus lander that contains essentially all the core capabilities of SAEVe thus greatly reducing the technology risk to SAEVe. The SAEVe long duration Venus lander promises exciting new science and is an ideal complimentary element to many future Venus orbiter missions being proposed or planned today.
Orbit determination of the Lunar Reconnaissance Orbiter: Status after Seven Years
The Lunar Reconnaissance Orbiter (LRO) has been orbiting the Moon since 2009, obtaining unique and foundational datasets important to understanding the evolution of the Moon and the Solar System. The high-resolution data acquired by LRO benefit from precise orbit determination (OD), limiting the need for geolocation and co-registration tasks. The initial position knowledge requirement (50 meters) was met with radio tracking from ground stations, after combination with LOLA altimetric crossovers. LRO-specific gravity field solutions were determined and allowed radio-only OD to perform at the level of 20 meters, although secular inclination changes required frequent updates. The high-accuracy gravity fields from GRAIL, with 10 km spatial resolution, further improved the radio-only orbit reconstruction quality (10 meters). However, orbit reconstruction is in part limited by the 0.3-0.5 mm/s measurement noise level in S-band tracking. One-way tracking through Laser Ranging can supplement the tracking available for OD with 28-Hz ranges with 20-cm single-shot precision, but is available only on the nearside (the lunar hemisphere facing the Earth due to tidal locking). Here, we report on the status of the OD effort since the beginning of the mission, a period spanning more than seven years. We describe modeling improvements and the use of new measurements. In particular, the LOLA altimetric data give accurate, uniform, and independent information about LRO's orbit, with a different sensitivity and geometry which includes coverage over the lunar farside and is not tied to ground-based assets. With SLDEM2015 (a combination of the LOLA topographic profiles and the Kaguya Terrain Camera stereo images), another use of altimetry is possible for OD. We extend the 'direct altimetry' technique developed for the ICESat mission to perform OD and adjust spacecraft position to minimize discrepancies between LOLA tracks and SLDEM2015. Comparisons with the radio-only orbits are used to evaluate this new tracking type, of interest for the OD of future lunar orbiters carrying a laser altimeter. LROC NAC images also provide independent accuracy estimation, through the repeated views taken of anthropogenic features for instance.
Trilogy, a Planetary Geodesy Mission Concept for Measuring the Expansion of the Solar System
The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, . The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year AU, which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system -- Earth's Moon, Mars and Venus -- and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.
Automated Detection of Meteorite Strewnfields in Doppler Weather Radar
For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar. Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.
Improving Photometric Calibration of Meteor Video Camera Systems
We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.
Comparing eyewitness-derived trajectories of bright meteors to instrumentally-observed data
The NASA Meteoroid Environment Office (MEO) is often called upon to analyze meteors of public interest observed over the United States. Data from meteor networks are often utilized to accomplish this, as are recordings from the general public. When these methods fail, eyewitness reports are the only resource which can be leveraged. The MEO developed a tool to crudely calculate the trajectories of bright meteors from the eyewitness reports submitted to the American Meteor Society. The tool was tested on eyewitness data for 33 cases and compared to observed data from the NASA All Sky Fireball Network. The tool performed better for cases with more than 75 eyewitness reports than those with fewer than 75, by almost a factor of two across all metrics except for the end height. For these cases, the eyewitness-derived trajectory was about 50 km from the observed trajectory, the radiant was within 15°, and the speed was within 20% of that observed on average. A description of the tool, example case studies, and general trends are described.
Determination of the meteor limiting magnitude
We present our method to calculate the meteor limiting magnitude. The limiting meteor magnitude defines the faintest magnitude at which all meteors are still detected by a given system. An accurate measurement of the limiting magnitude is important in order to calculate the meteoroid flux from a meteor shower or sporadic source. Since meteor brightness is linked to meteor mass, the limiting magnitude is needed to calculate the limiting mass of the meteor flux measurement. The mass distribution of meteoroids is thought to follow a power law, thus being slightly off in the limiting magnitude can have a significant effect on the measured flux. Sky conditions can change on fairly short timescales; therefore one must monitor the meteor limiting magnitude at regular intervals throughout the night, rather than just measuring it once. We use the stellar limiting magnitude as a proxy of the meteor limiting magnitude. Our method for determining the stellar limiting magnitude and how we transform it into the meteor limiting magnitude is presented. These methods are currently applied to NASA's wide-field meteor camera network to determine nightly fluxes, but are applicable to other camera networks.
Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the Laboratory
We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.
Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape
The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (N/N), we find that if Pluto's nitrogen originated as N the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH. The spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure N/N in N.
The electrostatic plasma environment of a small airless body under non-aligned plasma flow and UV conditions
Airless bodies interact with a wide variety of plasma environments throughout the solar system. For many objects, incident plasma is nearly co-aligned with solar ultraviolet radiation leading to the development of a positively charged dayside photoelectron sheath and a negatively charged nightside plasma sheath. Other objects, however, are present in environments where the plasma flow and solar UV radiation may not co-align. These environments include, for example, the moons of Mars as they pass through the deflected Martian magnetosheath, and many of the moons of the outer planets, which are embedded in co-rotating planetary magnetospheres. The decoupling of the plasma flow and UV incidence vectors opens up a wide range of possible surface charging and near-object plasma conditions as a function of the relative plasma-UV incidence angle. Here, we report on a series of simulations of the plasma interaction of a small body (effectively smaller than both electron and ion gyroradii) with both flowing plasma and UV radiation for different plasma-UV incidence angles using an electrostatic treecode model. We describe the plasma and electric field environment both on the object surface and in the interaction region surrounding the object, including complex surface charge and electric field distributions, interactions between surface-generated photoelectrons and ambient plasma electrons, and complex potential distributions, all of which vary as a function of the relative plasma flow-UV angle. We also show that in certain conditions, non-monotonic potential structures may exist around such objects, partially similar to those found at Earth's Moon.
Escape of the martian protoatmosphere and initial water inventory
Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained [Formula: see text] of HO. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses [Formula: see text] to [Formula: see text] could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was [Formula: see text] times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of [Formula: see text]. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of [Formula: see text] HO and [Formula: see text] CO could have been lost during [Formula: see text], if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for HO condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than [Formula: see text]. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles [Formula: see text] ago, when the solar XUV flux decreased to values that have been [Formula: see text] times that of today's Sun.
Periodic bursts of Jovian non-Io decametric radio emission
During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.
In situ methods for measuring thermal properties and heat flux on planetary bodies
The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP(3) currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.
Analytic investigation of climate stability on Titan: sensitivity to volatile inventory
We develop a semiempirical grey radiative model to quantify Titan's surface temperature as a function of pressure and composition of a nitrogen-methane-hydrogen atmosphere, solar flux and atmospheric haze. We then use this model, together with non-ideal gas-liquid equilibrium theory to investigate the behavior of the coupled surface-atmosphere system on Titan. We find that a volatile-rich Titan is unstable with respect to a runaway greenhouse-small increases in solar luminosity from the present value can lead to massive increases in surface temperature. If methane has been photolyzed throughout Titan's history, then this runaway can only be avoided if the photolytic ethane is removed from the surface-atmosphere system.
Seasonal variation of Titan's atmospheric structure simulated by a general circulation model
The seasonal variation of Titan's atmospheric structure with emphasis on the stratosphere is simulated by a three-dimensional general circulation model. The model includes the transport of haze particles by the circulation. The likely pattern of meridional circulation is reconstructed by a comparison of simulated and observed haze and temperature distribution. The GCM produces a weak zonal circulation with a small latitudinal temperature gradient, in conflict with observation. The direct reason is found to be the excessive meridional circulation. Under uniformly distributed opacity sources, the model predicts a pair of symmetric Hadley cells near the equinox and a single global cell with the rising branch in the summer hemisphere below about z = 230 km and a thermally indirect cell above the direct cell near the solstice. The interhemispheric circulation transports haze particles from the summer to the winter hemisphere, causing a maximum haze opacity contrast near the solstice and a smaller contrast near the equinox, contrary to observation. On the other, if the GCM is run under modified cooling rate in order to account for the enhancement in nitrites and some hydrocarbons in the northern hemisphere near the vernal equinox, the meridional cell at the equinox becomes a single cell with rising motions in the autumn hemisphere. A more realistic haze opacity distribution can be reproduced at the equinox. However, a pure transport effect (without particle growth by microphysics, etc.) would not be able to cause the observed discontinuity of the global haze opacity distribution at any location. The stratospheric temperature asymmetry can be explained by a combination of asymmetric radiative heating rates and adiabatic heating due to vertical motion within the thermally indirect cell. A seasonal variation of haze particle number density is unlikely to be responsible for this asymmetry. It is likely that a thermally indirect cell covers the upper portion of the main haze layer. An artificial damping of the meridional circulation enables the formation of high-latitude jets in the upper stratosphere and weaker equatorial superrotation. The latitudinal temperature distribution in the stratosphere is better reproduced.
A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin
We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.
On the volatile inventory of Titan from isotopic abundances in nitrogen and methane
We analyze recently published nitrogen and hydrogen isotopic data to constrain the initial volatile abundances on Saturn's giant moon Titan. The nitrogen data are interpreted in terms of a model of non-thermal escape processes that lead to enhancement in the heavier isotope. We show that these data do not, in fact, strongly constrain the abundance of nitrogen present in Titan's early atmosphere, and that a wide range of initial atmospheric masses (all larger than the present value) can yield the measured enhancement. The enrichment in deuterated methane is now much better determined than it was when Pinto et al. (1986. Nature 319, 388-390) first proposed a photochemical mechanism to preferentially retain the deuterium. We develop a simple linear theory to provide a more reliable estimate of the relative dissociation rates of normal and deuterated methane. We utilize the improved data and models to compute initial methane reservoirs consistent with the observed enhancement. The result of this analysis agrees with an independent estimate for the initial methane abundance based solely on the present-day rate of photolysis and an assumption of steady state. This consistency in reservoir size is necessary but not sufficient to infer that methane photolysis has proceeded steadily over the age of the solar system to produce large quantities of less volatile organics. Our analysis indicates an epoch of early atmospheric escape of nitrogen, followed by a later addition of methane by outgassing from the interior. The results also suggest that Titan's volatile inventory came in part or largely from a circum-Saturnian disk of material more reducing than the surrounding solar nebula. Many of the ambiguities inherent in the present analysis can be resolved through Cassini-Huygens data and a program of laboratory studies on isotopic and molecular exchange processes. The value of, and interest in, the Cassini-Huygens data can be greatly enhanced if such a program were undertaken prior to the prime phase of the mission.
On the origin of Titan's atmosphere
The present atmosphere of Titan exhibits evidence of extensive evolution, in the form of rapid photochemical destruction of methane and a large fractionation of the nitrogen and oxygen isotopes. Attempts to recover the initial inventory of volatiles lead toward a model in which nitrogen was originally supplied as NH3, essentially unmodified from its relative abundance in the outer solar nebula. Titan's atmospheric methane, in contrast, appears to have been formed from carbon and other carbon compounds, either by gas phase reactions in the subnebula or by accretional heating during the formation of Titan. These conclusions can be tested by further studies of abundances and isotope ratios in Titan's atmosphere, augmented by studies of comets. The possible similarity of carbon and nitrogen inventories on Titan to those on the inner planets makes this investigation particularly intriguing.