-conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
A finite element cochain complex on Cartesian meshes of any dimension based on the -inner product is introduced. It yields -conforming finite element spaces with exterior derivatives in . We use a tensor product construction to obtain -stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order.
Arbitrary-order intrinsic virtual element method for elliptic equations on surfaces
We develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form using an appropriate local reference system. The knowledge of the local parametrization allows us to consider the two-dimensional VEM scheme, without any explicit approximation of the surface geometry. The theoretical properties of the classical VEM are extended to our framework by taking into consideration the highly anisotropic character of the final discretization. These properties are extensively tested on triangular and polygonal meshes using a manufactured solution. The limitations of the scheme are verified as functions of the regularity of the surface and its approximation.
All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations
We focus on a time-dependent one-dimensional space-fractional diffusion equation with constant diffusion coefficients. An all-at-once rephrasing of the discretized problem, obtained by considering the time as an additional dimension, yields a large block linear system and paves the way for parallelization. In particular, in case of uniform space-time meshes, the coefficient matrix shows a two-level Toeplitz structure, and such structure can be leveraged to build ad-hoc iterative solvers that aim at ensuring an overall computational cost independent of time. In this direction, we study the behavior of certain multigrid strategies with both semi- and full-coarsening that properly take into account the sources of anisotropy of the problem caused by the grid choice and the diffusion coefficients. The performances of the aforementioned multigrid methods reveal sensitive to the choice of the time discretization scheme. Many tests show that Crank-Nicolson prevents the multigrid to yield good convergence results, while second-order backward-difference scheme is shown to be unconditionally stable and that it allows good convergence under certain conditions on the grid and the diffusion coefficients. The effectiveness of our proposal is numerically confirmed in the case of variable coefficients too and a two-dimensional example is given.
Approximating inverse FEM matrices on non-uniform meshes with -matrices
We consider the approximation of the inverse of the finite element stiffness matrix in the data sparse -matrix format. For a large class of shape regular but possibly non-uniform meshes including algebraically graded meshes, we prove that the inverse of the stiffness matrix can be approximated in the -matrix format at an exponential rate in the block rank. Since the storage complexity of the hierarchical matrix is logarithmic-linear and only grows linearly in the block-rank, we obtain an efficient approximation that can be used, e.g., as an approximate direct solver or preconditioner for iterative solvers.
On the convergence rate of the Kačanov scheme for shear-thinning fluids
We explore the convergence rate of the Kačanov iteration scheme for different models of shear-thinning fluids, including Carreau and power-law type explicit quasi-Newtonian constitutive laws. It is shown that the energy difference contracts along the sequence generated by the iteration. In addition, an a posteriori computable contraction factor is proposed, which improves, on finite-dimensional Galerkin spaces, previously derived bounds on the contraction factor in the context of the power-law model. Significantly, this factor is shown to be independent of the choice of the cut-off parameters whose use was proposed in the literature for the Kačanov iteration applied to the power-law model. Our analytical findings are confirmed by a series of numerical experiments.