Development and authentication of cv. Sunhong with high yield and multiple tolerance to heat damage, rusty roots and lodging
Ginseng () has been used as a valuable medicinal plant in Asia, and the demand for ginseng production for health functional food is increasing worldwide after the COVID-19 crisis. Although a number of cultivars have been developed to increase ginseng production, none of them were widely cultivated in Korea because they could not resist various environmental stresses while being grown in one place for at least 4 years. To address this, Sunhong was developed as a ginseng cultivar with high yield and multiple stress tolerance by pure line selection. Sunhong showed high yield and heat tolerance comparable to Yunpoong, a representative high-yielding cultivar, and exhibited 1.4 times lower prevalence of rusty roots than Yunpoong, suggesting that Sunhong can keep its high yield and quality during long-term cultivation. In addition, distinct color and lodging resistance were expected to increase the convenience of cultivation. To supply pure seeds to farmers, we also established a reliable high-throughput authentication system for Sunhong and seven ginseng cultivars through genotyping-by-sequencing (GBS) analysis. The GBS approach enabled to identify a sufficient number of informative SNPs in ginseng, a heterozygous and polyploid species. These results contribute to the improvement of yield, quality, and homogeneity, and therefore promote the ginseng industry.
Expression of the protective antigen for PEDV in transgenic duckweed,
Duckweeds are small, floating aquatic plants with a number of useful characteristics, including edibility, fast-growing, and a clonal proliferation. Duckweed is also fed to animals as a diet complement because of its high nutritional value. Porcine epidemic diarrhea virus (PEDV) is a major causative agent of fatal diarrhea in piglets and is a serious problem in the hog-raising industry. In this study, we assessed the feasibility of producing a protective antigen for the PEDV spike protein 1 using duckweed, . Stably transformed were obtained by co-cultivation with EHA105 harboring the PEDV spike protein gene. Transgene integration and expression of the PEDV spike protein 1 gene were confirmed by genomic PCR and RT-PCR and western blot analysis of transgenic , respectively. This is the first report of the expression of a vaccine antigen against an animal infectious disease in duckweed.