Analyzing and forecasting COVID-19 pandemic in the Kingdom of Saudi Arabia using ARIMA and SIR models
The novel coronavirus COVID-19 is spreading all across the globe. By June 29, 2020, the World Health Organization announced that the number of cases worldwide had reached 9 994 206 and resulted in more than 499 024 deaths. The earliest case of COVID-19 in the Kingdom of Saudi Arabia (KSA) was registered on March 2 in 2020. Since then, the number of infections as per the outcome of the tests increased gradually on a daily basis. The KSA has 182 493 cases, with 124 755 recoveries and 1551 deaths on June 29, 2020. There have been significant efforts to develop models that forecast the risks, parameters, and impacts of this epidemic. These models can aid in controlling and preventing the outbreak of these infections. In this regard, this article details the extent to which the infection cases, prevalence, and recovery rate of this pandemic are in the country and the predictions that can be made using the past and current data. The well-known classical SIR model was applied to predict the highest number of cases that may be realized and the flattening of the curve afterward. On the other hand, the ARIMA model was used to predict the prevalence cases. Results of the SIR model indicate that the repatriation plan reduced the estimated reproduction number. The results further affirm that the containment technique used by Saudi Arabia to curb the spread of the disease was efficient. Moreover, using the results, close interaction between people, despite the current measures remains a great risk factor to the spread of the disease. This may force the government to take even more stringent measures. By validating the performance of the applied models, ARIMA proved to be a good forecasting method from current data. The past data and the forecasted data, as per the ARIMA model provided high correlation, showing that there were minimum errors.
A deep learning-based approach for diagnosing COVID-19 on chest x-ray images, and a test study with clinical experts
Pneumonia is among the common symptoms of the virus that causes COVID-19, which has turned into a worldwide pandemic. It is possible to diagnose pneumonia by examining chest radiographs. Chest x-ray (CXR) is a fast, low-cost, and practical method widely used in this field. The fact that different pathogens other than COVID-19 also cause pneumonia and the radiographic images of all are similar make it difficult to detect the source of the disease. In this study, automatic detection of COVID-19 cases over CXR images was tried to be performed using convolutional neural network (CNN), a deep learning technique. Classifications were carried out using six different architectures on the dataset consisting of 15,153 images of three different types: healthy, COVID-19, and other viral-induced pneumonia. In the classifications performed with five different state-of-art models, ResNet18, GoogLeNet, AlexNet, VGG16, and DenseNet161, and a minimal CNN architecture specific to this study, the most successful result was obtained with the ResNet18 architecture as 99.25% accuracy. Although the minimal CNN model developed for this study has a simpler structure, it was observed that it has a success to compete with more complex models. The performances of the models used in this study were compared with similar studies in the literature and it was revealed that they generally achieved higher success. The model with the highest success was transformed into a test application, tested by 10 volunteer clinicians, and it was concluded that it provides 99.06% accuracy in practical use. This result reveals that the conducted study can play the role of a successful decision support system for experts.
A deep reinforcement learning based decision-making approach for avoiding crowd situation within the case of Covid'19 pandemic
Individuals' flow's fluidifcation in the same way as the thinning of the population's concentration remains among major concerns within the context of the pandemic crisis situations. The recent COVID-19 pandemic crisis is a typical example of the aforementioned where on despite of the containment phases that radically isolate the population but are not applicable persistently, people have to adapt their behavior to new daily-life situations tempering Individuals' stream, avoiding tides, and watering down population's concentration. Crowd evacuation is one of the well-known research domains that can play a pertinent role to face the challenge of the COVID-19 pandemic. In fact, considering the population's concentration thinning within the slant of the "crowd evacuation" paradigm allows managing the flow of the population, and consequently, decreasing the probable number of infected cases. In other words, crowd evacuation modeling and simulation with the aim of better-exploiting individuals' flow allow the study and analysis of different possible outcomes for designing population's concentration thinning strategies. In this article, a new decision-making approach is proposed in order to cope with the aforesaid challenges, which relies on an independent Deep Q Network with an improved SIR model (IDQN-I-SIR). The machine-learning component (i.e., IDQN) is in charge of the agent's movements control and I-SIR (improved "susceptible-infected-recovered" individuals) model is responsible to control the virus spread. We demonstrate the effectiveness of IDQN-I-SIR through a case-study of individuals' flow's management with infected cases' avoidance in an emergency department (often overcrowded in context of a pandemic crisis).
Real-time COVID-19 detection over chest x-ray images in edge computing
Severe Coronavirus Disease 2019 (COVID-19) has been a global pandemic which provokes massive devastation to the society, economy, and culture since January 2020. The pandemic demonstrates the inefficiency of superannuated manual detection approaches and inspires novel approaches that detect COVID-19 by classifying chest x-ray (CXR) images with deep learning technology. Although a wide range of researches about bran-new COVID-19 detection methods that classify CXR images with centralized convolutional neural network (CNN) models have been proposed, the latency, privacy, and cost of information transmission between the data resources and the centralized data center will make the detection inefficient. Hence, in this article, a COVID-19 detection scheme via CXR images classification with a lightweight CNN model called MobileNet in edge computing is proposed to alleviate the computing pressure of centralized data center and ameliorate detection efficiency. Specifically, the general framework is introduced first to manifest the overall arrangement of the computing and information services ecosystem. Then, an unsupervised model DCGAN is employed to make up for the small scale of data set. Moreover, the implementation of the MobileNet for CXR images classification is presented at great length. The specific distribution strategy of MobileNet models is followed. The extensive evaluations of the experiments demonstrate the efficiency and accuracy of the proposed scheme for detecting COVID-19 over CXR images in edge computing.
Co-occurrence patterns in diagnostic data
We demonstrate how graph decomposition techniques can be employed for the visualization of hierarchical co-occurrence patterns between medical data items. Our research is based on Gaifman graphs (a mathematical concept introduced in Logic), on specific variants of this concept, and on existing graph decomposition notions, specifically, graph modules and the clan decomposition of so-called 2-structures. The construction of the Gaifman graphs from a dataset is based on co-occurrence, or lack of it, of items in the dataset. We may select a discretization on the edge labels to aim at one among several Gaifman graph variants. Then, the decomposition of the graph may provide us with visual information about the data co-occurrences, after which one can proceed to more traditional statistical analysis.
HIGH-PRECISION BIOLOGICAL EVENT EXTRACTION: EFFECTS OF SYSTEM AND OF DATA
We approached the problems of event detection, argument identification, and negation and speculation detection in the BioNLP'09 information extraction challenge through concept recognition and analysis. Our methodology involved using the OpenDMAP semantic parser with manually written rules. The original OpenDMAP system was updated for this challenge with a broad ontology defined for the events of interest, new linguistic patterns for those events, and specialized coordination handling. We achieved state-of-the-art precision for two of the three tasks, scoring the highest of 24 teams at precision of 71.81 on Task 1 and the highest of 6 teams at precision of 70.97 on Task 2. We provide a detailed analysis of the training data and show that a number of trigger words were ambiguous as to event type, even when their arguments are constrained by semantic class. The data is also shown to have a number of missing annotations. Analysis of a sampling of the comparatively small number of false positives returned by our system shows that major causes of this type of error were failing to recognize second themes in two-theme events, failing to recognize events when they were the arguments to other events, failure to recognize nontheme arguments, and sentence segmentation errors. We show that specifically handling coordination had a small but important impact on the overall performance of the system. The OpenDMAP system and the rule set are available at http://bionlp.sourceforge.net.