Complete genome analysis of deep-sea hydrothermal sulfur-oxidizing bacterium Sulfitobacter sp. TCYB15 associated with mussel Bathymodiolus marisindicus and insights into its habitat adaptation
The complete genome sequence of proteases-producing Shewanella sp. H8 isolated from Antarctica
Bacteria of the genus Shewanella in the class Gammaproteobacteria are widely distributed in marine environments. Shewanella sp. H8, was isolated from a red algae sample collected from Nelson Island, Antarctica. Here, we present the complete genome sequence of strain H8, which consists of a single circular chromosome comprising 4,490,743 nucleotides with 40.59 % G + C content without any plasmid. In total, 3983 protein coding genes, 95 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain H8 showed that it contains four cold shock proteins and three fatty acid desaturases and possesses the potential to synthesize hglE-KS, arylpolyene, betalactone and RiPP-like compounds. Through genomic annotation, 91 protease-encoding genes were identified within the genome of strain H8. These proteases are classified into six categories based on their catalytic types. Among these proteases, metalloproteinases and serine proteases are dominant. These proteases may provide carbon and nitrogen sources to H8 by degrading proteins in the environment. This study will provide potential genetic information for the future research and development of cold-adapted proteases.
Genomic analysis of Rhodopirellula sp. P2 reveals its role in fucoidan degradation
Fucoidan, the main polysaccharide in various species of brown seaweed, has a high annual production. It is an important source of marine organic carbon and exhibits diverse biological activities and significant application potential. Rhodopirellula sp. P2, a novel marine bacterium of the phylum Planctomycetota, was isolated from intertidal algae samples collected from the Weihai coast, the Yellow Sea, China. The strain P2 is a Gram-negative, aerobic, and pear-shaped bacterium. Here, we report the complete genome sequence of Rhodopirellula sp. P2. The genome of strain P2 consists of a single circular chromosome with 7,291,416 bp and a GC content of 57.38 %, including 5462 protein-coding genes, 2 rRNA genes, and 48 tRNA genes. Genomic analysis revealed that strain P2 possessed 173 CAZymes and 106 sulfatases, indicating that strain P2 has the potential ability to utilize multiple polysaccharides, especially hydrolyze fucoidan to fucose. The genome of strain P2 also encodes a gene cluster related to bacterial microcompartment, suggesting the ability of strain P2 to metabolize fucose. These results enhance the understanding of the diversity and ecological functions of Planctomycetota, and also facilitate the exploitation of Planctomycetota and enzyme resources to utilize fucoidan. This study provides genetic insights into fucoidan catabolism by Planctomycetota, expanding our understanding of fucoidan-degrading microbial groups.
The complete genome sequence of Streptomyces sp. FIM 95-F1, a marine actinomycete that produces the antifungal antibiotic scopafungin
Streptomyces FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of Streptomyces sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that Streptomyces sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.
Complete genome and carbohydrate-active enzymes of Arenibacter antarcticus KCTC 52924 isolated from deep sea sediment of Ross Sea, Antarctica
Members of the genus Arenibacter were widely distributed in oceanic habitats around the world and have been studied for a variety of useful properties, including antigen deactivation, pollutant degradation, and the production of antimicrobial agents. Arenibacter antarcticus KCTC 52924 of our interest is an aerobic, non-motile, Gram-negative, psychrotolerant type strain isolated from the deep-sea sediment of Ross Sea, Antarctica. The extreme conditions of this habitat are believed to have diversified the substrate spectrum and range of operational conditions of the enzymes, offering both scientific interest and potential industrial benefits. Here, we obtained the complete genome sequence of this promising strain, which consists of 4,694,007 bp (G + C content of 38.8 %) with a single chromosome, 3917 protein-coding genes, 43 tRNAs, and 3 rRNA operons. The functional annotations of the genome reveal four metabolite biosynthesis clusters and a variety of carbohydrate-active enzymes with potential biotechnological applications. Additionally, several interesting features related to environmental interactions were identified. Therefore, this genome data and its genomic potentials figured out in this study serve as a conner stone in further study aimed at understanding physiology of this strain which may be valuable in biotechnological purpose.
A glimpse of microbial potential in metal metabolism in the Clarion-Clipperton Fracture Zone in the eastern Pacific Ocean based on metagenomic analysis
The polymetallic nodules distributed in the abyssal ocean floor are full of economic value, rich in manganese, iron, copper and rare-earth elements. Little is currently known about the diversity and the metabolic potential of microorganisms inhabiting the Clarion-Clipperton Fracture Zone (CCFZ) in eastern Pacific Ocean. In this study, the surface sediments (0-8 cm), which were divided into eight parts at 1 cm intervals were collected from the CCFZ. The microbial diversity and the metabolic potential of metal were examined by metagenomic sequencing and binning. The metal redox genes and metal transporter genes also showed a certain trend at different depths, the highest in the surface layer, about the same at 0-6 cm, and greater changes after >6 cm. 58 high- and medium metagenome-assembled genomes (MAGs) were recovered and assigned to 14 bacterial phyla and 1 archaeal phylum after dereplication. Alphaproteobacteria mainly carried out the oxidation of Fe/Mn and the reduction of Hg, Gammaproteobacteria mainly for the oxidation of Mn/Cu and the reduction of Cr/Hg and Methylomirabilota mainly for the oxidation of Mn and the reduction of As/Cr/Hg. Among the five Thermoproteota MAGs identified, only one had genes annotated for Mn oxidation, suggesting a limited but potentially significant role in this process at the bottom layer. By identifying the microbial diversity and the metabolic potential of metal in different depth, our study strengthens the understanding of metal metabolism in CCFZ and provides the foundation for further analyses of metal metabolism in such ecosystems.
Complete genome sequence of the 4-hydroxybenzoate-degrading bacterium Gymnodinialimonas sp. 57CJ19, a potential novel species from intertidal sediments
A bacterium Gymnodinialimonas sp. 57CJ19, was isolated from the intertidal sediments of Aoshan Bay, and further assays showed that it has the ability to degrade the antibacterial preservative 4-hydroxybenzoate. The complete genome sequence was sequenced, and phylogenomic analyses indicated that strain 57CJ19 represents a potential novel species in the genus Gymnodinialimonas (family Rhodobacteraceae). Its genome contains a 3,861,607-bp circular chromosome with 61.25% G + C content. Gene prediction revealed 3716 protein-encoding genes, 41 tRNA genes, 3 rrn operons, and 3 non-coding RNA genes. Functional annotation revealed a complete metabolic pathway for 4-hydroxybenzoate. The genome sequence of strain 57CJ19 provides new insights into the potential and underlying genomic basis of aromatic compound pollutant degradation by marine bacteria.
Genomic analysis of Alteromonas sp. M12 isolated from the Mariana Trench reveals its role in dimethylsulfoniopropionate cycling
Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio‑sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.
Complete genome sequence analysis of a biosurfactant-producing bacterium Bacillus velezensis L2D39
Biosurfactants are amphipathic molecules with high industrial values owing to their chemical properties and stability under several environmental conditions. They have become attractive microbial products in the emerging biotechnology industry, offering a potential environmentally-friendly alternative to synthetic surfactants. Nowadays, several types of biosurfactants are commercially available for a wide range of applications in healthcare, agriculture, oil extraction and environmental remediation. In this study, a marine bacterium Bacillus velezensis L2D39 with the capability of producing biosurfactants was successfully isolated and characterized. The complete genome sequence of the bacterium B. velezensis L2D39 was obtained using PacBio Sequel HGAP.4, resulting in a sequence consisting of 4,140,042 base pairs with a 46.2 mol% G + C content and containing 4071 protein-coding genes. The presence of gene clusters associated with biosurfactants was confirmed through antiSMASH detection. The analysis of complete genome sequence will provide insight into the potential applications of this bacterium in biotechnological and natural product biosynthesis.
Complete genome sequence of a novel Pseudomonas sp. IT1137 isolated from Antarctic intertidal sediment showing potential for alkane degradation at low temperatures
Pseudomonas species are known for their diverse metabolic abilities and broad ecological distribution. They are fundamental components of bacterial communities and perform essential ecological functions in the environment. A psychrotrophic Pseudomonas sp. IT1137 was isolated from intertidal sediment in the coastal region of the Fildes Peninsula, King George Island, Antarctica. The strain contained a circular chromosome of 5,346,697 bp with a G + C content of 61.66 mol% and one plasmid of 4481 bp with a G + C content of 64.61 mol%. A total of 4848 protein-coding genes, 65 tRNA genes and 15 rRNA genes were obtained. Genome sequence analysis revealed that strain IT1137 not only is a potentially novel species of the genus Pseudomonas but also harbors functional genes related to nitrogen, sulfur and phosphorus cycling. In addition, genes involved in alkane degradation, ectoine synthesis and cyclic lipopeptide (CLP) production were detected in the bacterial genome. The results indicate the potential of the strain Pseudomonas sp. IT1137 for biotechnological applications such as bioremediation and secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold coastal environments.
The complete genome sequence of the planctomycetotal bacterium Bremerella sp. P1 with abundant genes involved in polysaccharide degradation
Isolated from intertidal sediment of the Yellow Sea, China, Bremerella sp. P1 putatively represents a novel species within the genus Bremerella of the family Pirellulaceae in the phylum Planctomycetota. The complete genome of strain P1 comprises a single circular chromosome with a size of 6,955,728 bp and a GC content of 55.26%. The genome contains 5772 protein-coding genes, 80 tRNA and 6 rRNA genes. A total of 147 CAZymes and 128 sulfatases have been identified from the genome of strain P1, indicating that the strain has the capability to degrade a wide range of polysaccharides. Moreover, a gene cluster related to bacterial microcompartments (BMCs) formation containing genes encoding the shell proteins and related enzymes to metabolize fucose or rhamnose is also found in the genome of strain P1. The genome of strain P1 represents the second complete one in the genus Bremerella, expanding the understanding of the physiological and metabolic characteristics, interspecies diversity, and ecological functions of the genus.
Genomic profiling of biosynthetic potentials of medicinal secondary metabolites for 'Aliisedimentitalea scapharcae' KCTC 42119, isolated from ark shell
Microorganisms living with higher organisms are valuable sources of bioactive substances like antibiotics, which could assist them competing for more and better nutrients or space. Here, we focused on a marine animal-associated bacterium, 'Aliisedimentitalea scapharcae' KCTC 42119, which was isolated from ark shell collected from Gang-Jin bay of South Korea. We evaluated its biosynthetic potentials of medicinal secondary metabolites by de novo genome sequencing. The complete genome of strain KCTC 42119 sequenced is 5,083,900 bp and is comprised of one circular chromosome and four circular plasmids. Functional genome analysis by antiSMASH v7.1.0 showed that there are nine biosynthetic gene clusters encoded on the chromosome. The annotated secondary metabolites include antibiotic corynecin, cytoprotective ectoine and antineoplastic ET-743 (Yondelis), which suggested strain KCTC 42119 possesses potentials to synthesize a series of secondary metabolites of pharmaceutical utility. Genome analysis of 'A. scapharcae' also provides more insights into mining bioactive substances from animal-associated microorganisms.
Complete genome sequence of Kushneria phosphatilytica YCWA18 reveals the P-solubilizing activity of the genus Kushneria
Kushneria phosphatilytica YCWA18 (= CGMCC 1.9149 = NCCB 100306) was isolated from sediment collected in a saltern on the eastern coast of Yellow Sea in China. The genome was sequenced and comprised of one circular chromosome with the size of 3,624,619 bp and DNA G + C content of 59.13%. A total of 3267 protein-coding genes, 64 tRNA genes and 12 rRNA genes were obtained. Genomic annotation indicated that the genome of K. phosphatilytica YCWA18 had 34 genes involved in phosphorus (P) solubilization/metabolism, e.g., gdh, pqq, phoA, phoD and phoX, which products can convert insoluble P-containing compounds to more bio-available dissolved inorganic P. Comparative genomic analysis of Kushneria strains revealed that gdh, pqq, phoA, phoD and phoX were widely distributed in these strains, indicating the genus Kushneria may play an important role in the P cycle. Additionally, a multitude of salt tolerance genes were detected in the genome of K. phosphatilytica YCWA18. This study and the genome sequence data will be available for further research and will provide insights into potential biotechnological and agricultural applications of Kushneria strains.
Marine eDNA sampling from submerged surfaces with paint rollers
Environmental DNA (eDNA) analyses of species present in marine environments is the most effective biological diversity measurement tool currently available. eDNA sampling methods are an intrinsically important part of the eDNA biodiversity analysis process. Identification and development of eDNA sampling methods that are as rapid, affordable, versatile and practical as possible will improve rates of detection of marine species. Optimal outcomes of eDNA biodiversity surveys come from studies employing high levels of sampling replication, so any methods that make sampling faster and cheaper will improve scientific outcomes. eDNA sampling methods that can be applied more widely will also enable sampling from a greater range of marine surface micro-habitats, resulting in detection of a wider range of organisms. In this study, we compared diversity detection by several methods for sampling eDNA from submerged marine surfaces: polyurethane foam, nylon swabs, microfibre paint rollers, and sediment scoops. All of the methods produced a diverse range of species identifications, with >250 multicellular species represented by eDNA at the study site. We found that widely-available small paint rollers were an effective, readily available and affordable method for sampling eDNA from underwater marine surfaces. This approach enables the sampling of marine eDNA using extended poles, or potentially by remotely operated vehicles, where surface sampling by hand is impractical.
Genome analysis of Salinimicrobium sp. 3283s, a deep-sea bacterium isolated from the sediments of South China Sea, China
Salinimicrobium sp. 3283s is an aerobic, golden-yellow pigment-producing, Flavobacteriaceae bacterium isolated from the sediments at the depth of 1751 m in the South China Sea. In this study, we present the complete genome sequence of strain 3283s, which only have a single circular chromosome comprising 3,702,683 bp with 41.41% G + C content and no circular plasmid. In total, 3257 protein coding genes, 45 tRNA, 9 rRNA, and 13 sRNA genes were obtained. In terms of the function of gene annotation, strain 3283s was more different from Salinimicrobium oceani J15B91, which was isolated from the South China Sea at a similar depth, and more similar to a Mariana Trench-derived strain Salinimicrobium profundisediminis MT39, which was closer in phylogenetic taxonomic status, suggesting that strain 3283s possesses a stronger potential to adapt to the deep-sea environment. Furthermore, the high- pressure simulations also confirmed that strain 3283s can grow in both 30 MPa and 60 MPa hydrostatic pressure environments, and that it grows better in 30 MPa hydrostatic pressure environments than in 60 MPa hydrostatic pressure environments. In addition, we found a large number of genes in strain 3283s that can promote better adaptation of the bacteria to the low oxygen and high hydrostatic pressure (HHP) environment of the deep sea, such as biosynthetic enzymes of antioxidant pigments, genes encoding cytochromes with enhanced affinity for oxygen, proteins for adaptation to HHP, and genes encoding TonB-dependent transporters in the absence of flagella.
Transcriptomic investigation and biomarker discovery for zinc response in oysters Crassostrea gasar
In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 μg L Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 μg L, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 μg L. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.
Complete genome analysis of copper resistant bacteria Pseudoalteromonas sp. CuT4-3 isolated from a deep-sea hydrothermal vent
Pseudoalteromonas sp. CuT4-3, a copper resistant bacterium, was isolated from deep-sea hydrothermal sulfides on the Southwest Indian Ridge (SWIR), is an aerobic, mesophilic and rod-shaped bacterium belonging to the family Pseudoalteromonadaceae (class Gammaproteobacteria, order Alteromonadales). In this study, we present the complete genome sequence of strain CuT4-3, which consists of a single circular chromosome comprising 3,660,538 nucleotides with 41.05% G + C content and two circular plasmids comprising 792,064 nucleotides with 40.36% G + C content and 65,436 nucleotides with 41.50% G + C content. In total, 4078 protein coding genes, 105 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain CuT4-3 identified numerous genes related to heavy metal resistance (especially copper) and EPS production. The genome of strain CuT4-3 will be helpful for further understanding of its adaptive strategies, particularly its ability to resist heavy metal, in the deep-sea hydrothermal vent environment.
Genomic characteristics of nine Nitrospirota metagenome-assembled genomes in deep-sea sediments from East Pacific polymetallic nodules zone
Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to "Candidatus Manganitrophaceae" of phylum Nitrospirota with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, Nitrospirota members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to Nitrospirota are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these Nitrospirota have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order Nitrospirales has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these Nitrospirota. In addition, different metal ion transport systems can help those Nitrospirota to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of Nitrospirota in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.
Genome analysis of Rossellomorea sp. y25, a deep sea bacterium isolated from the sediments of South China Sea
Rossellomorea sp. y25, a putative new species of yellow pigment-producing, aerobic and chemoheterotrophic bacterium belonging to the family Bacillaceae, was isolated from the sediments at the depth of 1829 m in the South China Sea. In this study, we present the complete genome sequences of strain y25, which consisted of only one circular chromosome with 4,633,006 bp and the content of G + C was 41.76%. A total of 4466 CDSs, 106 tRNA, 33 rRNA, and 101 sRNA genes were obtained. Genomic analysis of strain y25 showed that it has the ability to produce antioxidant carotenoids and a large number of heavy metal resistance genes, such as arsenic, cadmium and zinc. In addition, strain y25 contains a prophage that may contribute to host protection against lysis by related Bacillus-like phages. This is the first report of genome-wide information on a bacterium of the genus Rossellomorea isolated from the deep sea, providing insights into how microorganisms of this genus adapt to deep-sea environments.
Complete genome sequencing of Hortaea werneckii M-3 for identifying polyester polyurethane degrading enzymes
Hortaea werneckii M-3, a black yeast isolated from the marine sediment of the West Pacific, can utilize polyester polyurethane (PU, Impranil DLN) as a sole carbon source. Here, we present the complete genome of Hortaea werneckii M-3 with the focus on PU degradation enzymes. The total genome size is 38,167,921 bp, consisting of 186 contigs with a N50 length of 651,266 bp and a GC content of 53.06%. Genome annotation analysis predicts a total of 13,462 coding genes, which include 99 tRNAs and 105 rRNAs. Some genes encoding PU degrading enzymes including cutinase and urease are identified in this genome. The genome analysis of Hortaea werneckii M-3 will be helpful for further understanding the degradation mechanism of polyester PU by marine yeasts.
Genomic analysis of Cobetia sp. D5 reveals its role in marine sulfur cycling
Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.