On the Factors Driving Upper-Ocean Salinity Variability at the Western Edge of the Eastern Pacific Fresh Pool
The tropical Eastern Pacific Fresh Pool (EPFP) has some of the highest precipitation rates and lowest sea surface salinities found in the open ocean. In addition, the sea surface salinity in the EPFP exhibits one of the strongest annual cycles in the world ocean. The region is strongly affected by the meridionally migrating Intertropical Convergence Zone and is also influenced by large-scale ocean currents and wind-driven Ekman currents. Recognizing the complexity of competing regional influences and the importance of sea surface salinity as an integrator of freshwater forcing, the Salinity Processes Upper-ocean Regional Study (SPURS) was undertaken to better understand how ocean processes and surface freshwater fluxes set surface salinity. Instrumentation on a surface mooring, deployed for 14 months near the western edge of the EPFP, allowed estimation of the surface fluxes of momentum, heat, and freshwater. Subsurface instrumentation on the mooring provided upper-ocean vertical structure and horizontal currents. These observations, along with horizontal gradients of surface salinity from the Soil Moisture Active Passive (SMAP) satellite instrument, were used to estimate the surface-layer salinity budget at the western edge of the EPFP. While the low salinity associated with the presence of the EPFP at the mooring site was sustained by heavy rainfall, it was found that seasonal variability in large-scale currents was important to controlling the transition between the "salty" and "fresh" seasons. Ekman advection was important to prolonging local high salinity as rainfall decreased. Although illuminating some key processes, the temporal variability of the surface-layer salinity budget also shows significant complexity, with processes such as surface freshwater fluxes and vertical mixing making notable contributions. The surface flux term and the terms involving mixing across the base of the surface layer oppose and nearly cancel each other throughout the deployment, such that the horizontal advection term effectively accounts for most of the variability in surface salinity at the site on monthly to seasonal timescales. Further investigation, taking advantage of additional observations during SPURS-2, will be needed to more thoroughly examine the relevant physical processes.
Rain and Sun Create Slippery Layers in Eastern Pacific Fresh Pool
An autonomous Lagrangian float equipped with a high-resolution acoustic Doppler current profiler observed the evolution of upper-ocean stratification and velocity in the Eastern Pacific Fresh Pool for over 100 days in August-November 2016. Although convective mixing homogenized the water column to 40 m depth almost every night, the combination of diurnal warming on clear days and rainfall on cloudy days routinely produced strong stratification in the upper 10 m. Whether due to thermal or freshwater effects, the initial strong stratification was mixed downward and incorporated in the bulk of the mixed layer within a few hours. Stratification cycling was associated with pronounced variability of ocean surface boundary layer turbulence and vertical shear of wind-driven (Ekman) currents. Decoupled from the bulk of the mixed layer by strong stratification, warm and fresh near-surface waters were rapidly accelerated by wind, producing the well-known "slippery layer" effect, and leading to a strong downwind near-surface distortion of the Ekman profile. A case study illustrates the ability of the new generation of Lagrangian floats to measure rapidly evolving temperature, salinity, and velocity, including turbulent and internal wave components. Quantitative interpretation of the results remains a challenge, which can be addressed with high-resolution numerical modeling, given sufficiently accurate air-sea fluxes.
Autonomous Multi-Platform Observations During the Salinity Processes in the Upper-ocean Regional Study
The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.
An Intensive Observation of Calving at Helheim Glacier, East Greenland
Calving of glacial ice into the ocean from the Greenland Ice Sheet is an important component of global sea level rise. The calving process itself is relatively poorly observed, understood, and modeled; as such, it represents a bottleneck in improving future global sea level estimates in climate models. We organized a pilot project to observe the calving process at Helheim Glacier in East Greenland in an effort to better understand it. During an intensive one-week survey, we deployed a suite of instrumentation including a terrestrial radar interferometer, GPS receivers, seismometers, tsunameters, and an automated weather station. This effort captured a calving process and measured various glaciological, oceanographic, and atmospheric parameters before, during, and after the event. One outcome of our observations is evidence that the calving process actually consists of a number of discrete events, spread out over time, in this instance over at least two days. This time span has implications for models of the process. Realistic projections of future global sea level will depend on accurate parametrization of calving, which will require more sustained observations.
Models: Tools for Synthesis in International Oceanographic Research Programs
Aerosolized Florida Red Tide Toxins and Human Health Effects
Harmful Algal Blooms: At the Interface Between Coastal Oceanography and Human Health