JOURNAL OF THE ACM

From the Analysis of Anatomy and Locomotor Function of Biological Foot Systems to the Design of Bionic Foot: An Example of the Webbed Foot of the Mallard
Han D, Liu H, Ren L, Hu J and Yang Q
This study utilized the mallard's foot as the subject, examining the bone distribution via computed tomography (CT) and analyzing pertinent parameters of the tarsometatarsal bones. Additionally, gross anatomy methods were employed to elucidate the characteristics of the toes and webbing bio-structures and their material composition. Biologically, the mallard's foot comprises tarsometatarsal bones and 10 phalanges, enveloped by fascia, tendons, and skin. Vernier calipers were used to measure the bones, followed by statistical analysis to acquire structural data. Tendons, originating in proximal muscles and terminating in distal bones beneath the fascia, facilitate force transmission and systematic movement of each segment's bones. Regarding material composition, the skin layer serves both encapsulation and wrapping functions. Fat pads, located on the metatarsal side of metatarsophalangeal joints and each phalanx, function as cushioning shock absorbers. The correlation between the force applied to the tarsometatarsal bones and the webbing opening angle was explored using a texture analyzer. A simplified model describing the driving force behind the webbing opening angle was introduced. Furthermore, we designed a bionic foot, contributing a foundational reference for anti-sinking bionic foot development.
Effects of particle size and thickness of quartz sand on the webbed foot kinematics of mallard (Anas platyrhynchos)
Han D, Liu H, Hu J and Yang Q
The webbed foot structure of mallards (Anas platyrhynchos) exhibits effective anti-subsidence properties when walking on soft ground. To investigate the effects of quartz sand particle size and thickness on joint angles and the movement patterns of webbed feet, we created a testing substrate with quartz sand and utilized high-speed cameras and kinematic analysis tools for data acquisition. Mallards mainly adjusted the tarsometatarso-phalangeal joint (TMTPJ) during touch-down and lift-off stages in response to increasing particle size or enhanced ground roughness. Conversely, adjustments to the intertarsal joint (ITJ) predominantly took place during mid-stance. Conversely, mallards predominantly adjusted the ITJ during touch-down and lift-off when coping with increased quartz sand thickness, with TMTPJ adjustments mainly occurring at touch-down. As quartz sand particle size increased, the TMTPJ angle increased, the ITJ angle decreased, toe closure advanced, and the duty factor decreased throughout the entire stride cycle. In contrast, increasing quartz sand thickness led to more delayed TMTPJ adjustments, slower webbed foot closure, and an increased duty factor throughout the stride cycle. Mallards modify their leg posture to notably decrease the touch-down foot angle upon encountering sandy terrain. This action subsequently forms a depression beneath their feet, contributing to sand consolidation and limiting flow. During the stance phase, the mallard's weight is distributed across the webbed foot, generating minimal pressure and preventing significant subsidence while walking on sandy ground.