Acta Geophysica

Development and validation a novel FEZF2 based fluorescent reporter for corticospinal motor neurons
Wu R, Ramakrishnan S, Lin H, Dong Z, Liu M and Qiang L
Corticospinal motor neurons (CSMNs), also named upper motor neurons, are the giant pyramidal neurons called Betz cells. In mammals, the majority of CSMNs reside within layer V of the primary motor cortex, where they extend long axon bundles named the pyramidal tract into the brainstem and the spinal cord to control voluntary movement. CSMN lesions are implicated in a variety of neurodegenerative disorders, such Amyotrophic Lateral Sclerosis, Primary Lateral Sclerosis and Hereditary Spastic paraplegia. Although FEZF2-CTIP2 genetic axis have been indicated as the cardinal molecular pathway underlying the development of CSMNs, these proteins are transcription factors that are mostly used to label the nuclei of CSMNs in the fixed cells and tissues. Therefore, a fluorescent reporter to mark CSMNs will be invaluable in identifying living CSMNs, including their extended processes, for time-lapse imaging and high-throughput molecular analyses with much more improved specificity. Based on the in-silico analysis, we identified a putative region within the promoter sequence of FEZF2 and assembled it with an indispensable enhancer motif at its downstream of the gene to form a complex promoter that drives the expression of reporter GFP. The plasmid and virus of FEZF2:eGFP reporter constructs were further validated for its use in specifically labeling CSMNs in primary neuronal cultures from the embryonic rat motor cortex, postnatal mouse cortex. This innovative molecular labeling tool has the potential to offer indispensable support in diverse experimental setups, enabling a comprehensive understanding of the susceptibility and specificity of CSMNs in a wide array of neurological disorders.
Kif15 deficiency contributes to depression-like behavior in mice
Wang J, Tu Q, Zhang S, He X, Ma C, Qian X, Wu R, Shi X, Yang Z, Liu Y, Dong Z and Liu M
Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15 mice. In behavioral tests, Kif15 female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15 mice, along with the upregulation of Interleukin-6 and Interleukin-1β in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15 mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.
Efficient manipulation of gene expression using Natronobacterium gregoryi Argonaute in zebrafish
Dong Z, Chen X, Zhuo R, Li Y, Zhou Z, Sun Y, Liu Y and Liu M
Natronobacterium gregoryi Argonaute (NgAgo) was found to reduce mRNA without generating detectable DNA double-strand breaks in a couple of endogenous genes in zebrafish, suggesting its potential as a tool for gene knockdown. However, little is known about how it interacts with nucleic acid molecules to interfere with gene expression.