Freshwater Science

Identifying invertebrate indicators for streamflow duration assessments in forested headwater streams
Fritz KM, Kashuba RO, Pond GJ, Christensen JR, Alexander LC, Washington BJ, Johnson BR, Walters DM, Thoeny WT and Weaver PC
Streamflow-duration assessment methods (SDAMs) are rapid, indicator-based tools for classifying streamflow duration (e.g., intermittent vs perennial flow) at the reach scale. Indicators are easily assessed stream properties used as surrogates of flow duration, which is too resource intensive to measure directly for many reaches. Invertebrates are commonly used as SDAM indicators because many are not highly mobile, and different species have life stages that require flow for different durations and times of the year. The objectives of this study were to 1) identify invertebrate taxa that can be used as SDAM indicators to distinguish between stream reaches having intermittent and perennial flow, 2) to compare indicator strength across different taxonomic and numeric resolutions, and 3) to assess the relative importance of season and habitat type on the ability of invertebrates to predict streamflow-duration class. We used 2 methods, random forest models and indicator species analysis, to analyze aquatic and terrestrial invertebrate data (presence/absence, density, and biomass) at the family and genus levels from 370 samples collected from both erosional and depositional habitats during both wet and dry seasons. In total, 36 intermittent and 53 perennial reaches were sampled along 31 forested headwater streams in 4 level II ecoregions across the United States. Random forest models for family- and genus-level datasets had stream classification accuracy ranging from 88.9 to 93.2%, with slightly higher accuracy for density than for presence/absence and biomass datasets. Season (wet/dry) tended to be a stronger predictor of streamflow-duration class than habitat (erosional/depositional). Many taxa at the family (58.8%) and genus level (61.6%) were collected from both intermittent and perennial reaches, and most taxa that were exclusive to 1 streamflow-duration class were rarely collected. However, 23 family-level or higher taxa (20 aquatic and 3 terrestrial) and 44 aquatic genera were identified as potential indicators of streamflow-duration class for forested headwater streams. The utility of the potential indicators varied across level II ecoregions in part because of representation of intermittent and perennial reaches in the dataset but also because of variable ecological responses to drying among species. Aquatic invertebrates have been an important field indicator of perennial reaches in existing SDAMs, but our findings highlight how including aquatic and terrestrial invertebrates as indicators of intermittent reaches can further maximize the data collected for streamflow-duration classifications.
Freshwater Salinization Syndrome Alters Retention and Release of 'Chemical Cocktails' along Flowpaths: from Stormwater Management to Urban Streams
Kaushal SS, Reimer JE, Mayer PM, Shatkay RR, Maas CM, Nguyen WD, Boger WL, Yaculak AM, Doody TR, Pennino MJ, Bailey NW, Galella JG, Weingrad A, Collison DC, Wood KL, Haq S, Johnson TAN, Duan S and Belt KT
We investigate impacts of Freshwater Salinization Syndrome (FSS) on mobilization of salts, nutrients, and metals in urban streams and stormwater BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic U.S. and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show: (1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (.., similar to the way concentrations increase during other soil disturbance activities); (2) sharp declines in pH (acidification) in response to road salt applications due to mobilization of H from soil exchange sites by Na; (3) sharp increases in organic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications likely due to lysing cells and/or changes in solubility; (4) significant retention (~30-40%) of Na in stormwater BMP sediments and floodplains in response to salinization; (5) increased ion exchange and mobilization of diverse salt ions (Na, Ca, K, Mg), nutrients (N, P), and trace metals (Cu, Sr) from stormwater BMPs and restored streams in response to FSS; (6) downstream increasing loads of Cl, SO , Br, F, and I along flowpaths through urban streams, and P release from urban stormwater BMPs in response to salinization, and (7) a significant annual reduction (> 50%) in Na concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compared our original results to published metrics of contaminant retention and release across a broad range of stormwater management BMPs from North America and Europe. Overall, urban streams and stormwater management BMPs consistently retain Na and Cl but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater management BMPs. Reducing diverse 'chemical cocktails' of contaminants mobilized by freshwater salinization is now a priority for effectively and holistically restoring urban waters.
Reconceptualizing the hyporheic zone for nonperennial rivers and streams
DelVecchia AG, Shanafield M, Zimmer MA, Busch MH, Krabbenhoft CA, Stubbington R, Kaiser KE, Burrows RM, Hosen J, Datry T, Kampf SK, Zipper SC, Fritz K, Costigan K and Allen DC
Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic-terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.
Quantifying spatial and temporal relationships between diatoms and nutrients in streams strengthens evidence of nutrient effects from monitoring data
Yuan LL, Smucker NJ, Nietch CT and Pilgrim EM
Observational data are frequently used to better understand the effects of changes in P and N on stream biota, but nutrient gradients in streams are usually associated with gradients in other environmental factors, a phenomenon that complicates efforts to accurately estimate the effects of nutrients. Here, we propose a new approach for analyzing observational data in which we compare the effects of changes in nutrient concentrations in time within individual sites and in space among many sites. Covarying relationships between other, potentially confounding environmental factors and nutrient concentrations are unlikely to be the same in both time and space, and, therefore, estimated effects of nutrients that are similar in time and space are more likely to be accurate. We applied this approach to diatom metabarcoding data collected from streams in the East Fork of the Little Miami River watershed, Ohio, USA. Changes in diatom assemblage composition were consistently associated with changes in the concentration of total reactive P in both time and space. In contrast, despite being associated with spatial differences in ammonia and urea concentrations, diatom assemblage composition was not associated with temporal changes in these nitrogen species. We suggest that the results of this analysis provide evidence of a causal effect of increased P on diatom assemblage composition. We further analyzed the effects of temporal variability in measurements of total reactive P and found that averaging periods greater than ~1 wk prior to sampling best represented the effects of P on the diatom assemblage. Comparisons of biological responses in space and time can sharpen insights beyond those that are based on analyses conducted on only 1 of the 2 dimensions.
State of the ART: Using artificial refuge traps to control invasive crayfish in southern California streams
Curti JN, Fergus CE and De Palma-Dow AA
Invasive species are a widespread threat to stream ecosystems across the planet. In Southern California, USA, the invasive red swamp crayfish Procambarus clarkii (Girard, 1852) poses a significant threat to native aquatic fauna. Studies have suggested that artificial refuge traps (ARTs) resembling crayfish burrows can be used to remove invasive crayfish, but, to date, no studies have focused on optimizing ART design and deployment to maximize crayfish catch. This month-long study tested the effect of modifications on ART diameter, color, and soak time on catch effectiveness across 160 traps. We evaluated catch data by creating multiple candidate generalized linear mixed models predicting catches with different modeling parameterizations and a priori hypothesized predictor variables. During the study period, ARTs removed a total of 240 red swamp crayfish with no incidental bycatch. Larger (2-6-cm carapace length) were found more frequently in 5.1-cm-diameter traps, and smaller (1-4 cm) were found more frequently in 2.5-cm-diameter traps. Catch numbers varied between trap types, with black-colored 5.1-cm-diameter traps removing the greatest amount of the total caught in the study (mean = 0.27, SD = 0.29; 35% of the total caught) and black-colored 2.5-cm-diameter traps removing the least amount (mean = 0.09, SD = 0.55; 12% of the total). Further, ART deployment duration was an important predictor variable for candidate models, where ARTs with 4-d and 7-d deployment durations had lower catch/unit effort than traps with 1-d and 2-d deployments. This factorial experiment is the 1st study to suggest specific design modifications to ARTs that optimize invasive red swamp crayfish removal without incurring non-target incidental bycatch. This study demonstrates that ARTs can be a valuable tool for conservation managers interested in restoring streams through invasive crayfish removal, especially where there are sensitive biological resources.
Variation in stream network relationships and geospatial predictions of watershed conductivity
McManus MG, D'Amico E, Smith EM, Polinsky R, Ackerman J and Tyler K
Secondary salinization, the increase of anthropogenically-derived salts in freshwaters, threatens freshwater biota and ecosystems, drinking water supplies, and infrastructure. The various anthropogenic sources of salts and their locations in a watershed may result in secondary salinization of river and stream networks through multiple inputs. We developed a watershed predictive assessment to investigate the degree to which topology, land-cover, and land-use covariates affect stream specific conductivity (SC), a measure of salinity. We used spatial stream network models to predict SC throughout an Appalachian stream network in a watershed affected by surface coal mining. During high-discharge conditions, 8 to 44% of stream km in the watershed exceeded the SC benchmark of 300 μS/cm, which is meant to be protective of aquatic life in the Central Appalachian ecoregion. During low-discharge conditions, 96 to 100% of stream km exceeded the benchmark. The 2 different discharge conditions altered the spatial dependency of SC among the stream monitoring sites. During most low discharges, SC was a function of upstream-to-downstream network distances, or flow-connected distances, among the sites. Flow-connected distances are indicative of upstream dependencies affecting stream SC. During high discharge, SC was related to both flow-connected distances and flow-unconnected distances (i.e., distances between sites on different branches of the network). Flow-unconnected distances are indicative of processes on adjacent branches and their catchments affecting stream SC. With sites distributed from headwaters to the watershed outlet, the extent of impacts from secondary salinization could be better spatially predicted and assessed with spatial stream network models than with models assuming spatial independence. Importantly, the assessment also recognized the multi-scale spatial relationships that can occur between the landscape and stream network.
Quantifying stream periphyton assemblage responses to nutrient amendments with a molecular approach
Hagy Iii JD, Houghton KA, Beddick DL, James JB, Friedman SD and Devereux R
Nutrient (nitrogen [N] and phosphorus [P]) pollution is a pervasive water quality issue in the USA for small streams and rivers. The effect of nutrients on the biotic condition of streams is often evaluated with biological indicators such as macroinvertebrate assemblages or periphyton assemblages, particularly diatoms. Molecular approaches facilitate the use of periphyton assemblages as bioindicators because periphyton is diverse and its composition as a whole, rather than just diatoms, soft-bodied algae, or any single group, may convey additional information about responses to nutrients. To further develop the concept that a taxonomically-broad evaluation of periphyton assemblages could be useful for developing stream bioindicators, we examined microbial assemblage composition with both 16S and 18S rRNA genes, enabling us to evaluate composition in 3 domains. We measured otherwise unknown nutrient responses of different periphyton groups in situ with experiments that used glass fiber filters to allow diffusion of amended nutrients into a stream. We deployed these experimental setups in 2 streams that differ in the extent of agricultural land-use in their catchments in the southeastern USA. Experiments consisted of controls, N amendments, P amendments, and both N and P amendments. Periphyton assemblages that grew on the filters differed significantly by stream, date or season, and nutrient treatment. Assemblage differences across treatments were more consistent among Bacteria and Archaea than among eukaryotes. Effects of nutrient amendments were more pronounced in the stream with less agricultural land use and, therefore, lower nutrient loading than in the stream with more agricultural land use and higher nutrient loading. Combined N and P amendments decreased species richness and evenness for Bacteria and Archaea by ∼36 and ∼9%, respectively, compared with controls. Indicator species analysis revealed that specific clades varied in their response to treatments. Indicators based on the responses of these indicator clades were related to nutrient treatments across sites and seasons. Analyses that included all the taxa in a domain did not resolve differences in responses to N vs P. Instead, better resolution was achieved with an analysis focused on diatoms, which responded more strongly to P than N. Overall, our results showed that in situ nutrient-diffusing substrate experiments are a useful approach for describing assemblage responses to nutrients in streams. This type of molecular approach may be useful to environmental agencies and stakeholders responsible for assessing and managing stream water quality and biotic condition.
Selecting Comparator Sites for Ecological Causal Assessment Based on Expected Biological Similarity
Gillett DJ, Mazor RD and Norton SB
Sites in poor ecological condition often require causal assessment to determine appropriate follow-up actions. Site-specific causal assessments can be time consuming. To streamline the process, we describe a quantitative method that expedites a key component of causal assessment: identifying a group of ecologically similar (comparator) sites that are used to compare and contrast biological condition and stressor exposure at the site of interest. A good set of comparator sites should: 1. Be capable of supporting similar biota to the impaired site in the absence of disturbance; 2. Comprise a gradient of biotic condition; and 3. Contain enough sites to assess variability. We used expected biological similarity to select good sets of comparator sites from a large pool of potential sites. Expected biological similarity was measured as Bray-Curtis dissimilarity values (BC) calculated from the expected benthic macroinvertebrate taxa lists produced by a predictive biotic index of stream health. Sets of comparator sites were created for 15 demonstration sites across Southern California in poor condition. We examined the stressor and biological data collected at the 15 sites and their comparators to assess the likelihood that four example stressors - total nitrogen, ammonia, specific conductivity, and bifenthrin - contribute to the poor biotic conditions that were observed. We were able to select more than 100 comparator sites for all but 1 of the 15 demonstration sites at a BC <0.1. These sets of comparator sites were then used to evaluate the four example stressors using two commonly used causal assessment types of evidence. Elevated conductivity was the most frequently supported likely cause among the demonstration sites, though total nitrogen and bifenthrin were also indicated at some sites. Though our specific approach was tailored for application in California's stream bioassessment framework, the concepts could be adapted for any bioassessment program with a large amount of sample data and an associated predictive index of biotic condition. Furthermore, this approach lays the groundwork for developing a novel approach to causal assessment that begins with a rapid, screening-level evaluation of stressors common in a region using these data-rich groups of comparator sites, which then informs follow-up management actions.
Response to basal resources by stream macroinvertebrates is shaped by watershed urbanization, riparian canopy cover, and season
Alberts JM, Fritz KM and Buffam I
Riparian reforestation is a common restoration action in urban streams, but relatively little is known about the influence of local riparian vegetation in the face of watershed-scale urban land cover. Allochthonous organic matter and benthic algae are important basal energy resources in streams, but the roles of watershed urbanization vs near-stream vegetation in the availability of these resources are not well understood. Our goal was to understand how the interaction of land cover at 2 spatial scales (watershed vs reach) and seasonal dynamics shape basal resources and their effects on macroinvertebrate communities. We assessed relationships between seasonal patterns in standing stocks of particulate organic matter (POM) and benthic periphyton and macroinvertebrate community composition in openand closed-canopy reaches of 4 urban and 4 reference streams in northern Kentucky, USA. POM standing stocks were not strongly influenced by watershed or riparian condition. Benthic algal biomass was greater in urban than in reference streams in all seasons and in open than in closed riparian canopies in summer when light levels are most affected by a deciduous canopy. Relationships between macroinvertebrate functional feeding group (FFG) biomass and their primary food resources were influenced by watershed land use and season, but riparian canopy effects were minor. The proportion of collectors varied by season, whereas the proportion of shredders was higher in reference than urban streams. Scraper biomass was influenced by benthic algal biomass and varied seasonally, whereas predator biomass was driven by prey-insect biomass. Periphyton density was affected by the interaction of watershedand reach-scale land cover and was the only basal resource strongly related to consumer taxa. Watershed land use influences the stream ecosystem, but local riparian canopy may be important in limiting benthic algal accumulation.
The Lake-Catchment (LakeCat) Dataset: characterizing landscape features for lake basins within the conterminous USA
Hill RA, Weber MH, Debbout RM, Leibowitz SG and Olsen AR
Natural and human-related landscape features influence the ecology and water quality of lakes. Summarizing these features in a hydrologically meaningful way is critical to understanding and managing lake ecosystems. Such summaries are often done by delineating watershed boundaries of individual lakes. However, many technical challenges are associated with delineating hundreds or thousands of lake watersheds at broad spatial extents. These challenges can limit the application of analyses and models to new, unsampled locations. We present the Lake-Catchment (LakeCat) Dataset (https://www.epa.gov/national-aquatic-resource-surveys/lakecat) of watershed features for 378,088 lakes within the conterminous USA. We describe the methods we used to: 1) delineate lake catchments, 2) hydrologically connect nested lake catchments, and 3) generate several hundred watershed-level metrics that summarize both natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, and mines) features. We illustrate how this data set can be used with a random forest model to predict the probability of lake eutrophication by combining LakeCat with data from US Environmental Protection Agency's National Lakes Assessment (NLA). This model correctly predicted the trophic state of 72% of NLA lakes, and we applied the model to predict the probability of eutrophication at 297,071 unsampled lakes across the conterminous USA. The large suite of LakeCat metrics could be used to improve analyses of lakes at broad spatial extents, improve the applicability of analyses to unsampled lakes, and ultimately improve the management of these important ecosystems.
Microscale vicariance and diversification of Western Balkan caddisflies linked to karstification
Previšić A, Schnitzler J, Kučinić M, Graf W, Ibrahimi H, Kerovec M and Pauls SU
The karst areas in the Dinaric region of the Western Balkan Peninsula are a hotspot of freshwater biodiversity. Many investigators have examined diversification of the subterranean freshwater fauna in these karst systems. However, diversification of surface-water fauna remains largely unexplored. We assessed local and regional diversification of surface-water species in karst systems and asked whether patterns of population differentiation could be explained by dispersal-diversification processes or allopatric diversification following karst-related microscale vicariance. We analyzed mitochondrial cytochrome oxidase subunit I (mtCOI) sequence data of 4 caddisfly species (genus ) in a phylogeographic framework to assess local and regional population genetic structure and Pliocene/Pleistocene history. We used BEAST software to assess the timing of intraspecific diversification of the target species. We compared climate envelopes of the study species and projected climatically suitable areas during the last glacial maximum (LGM) to assess differences in the species climatic niches and infer potential LGM refugia. The haplotype distribution of the 4 species (324 individuals from 32 populations) was characterized by strong genetic differentiation with few haplotypes shared among populations (16%) and deep divergence among populations of the 3 endemic species, even at local scales. Divergence among local populations of endemics often exceeded divergence among regional and continental clades of the widespread . Major divergences among regional populations dated to 2.0 to 0.5 Mya. Species distribution model projections and genetic structure suggest that the endemic species persisted in situ and diversified locally throughout multiple Pleistocene climate cycles. The pattern for was different and consistent with multiple invasions into the region. Patterns of population genetic structure and diversification were similar for the 3 regional endemic species and consistent with microscale vicariance after the onset of intensified karstification in the Dinaric region. Karstification may induce microscale vicariance of running surface-water habitats and probably promotes allopatric fragmentation of stream insects at small spatial scales.