ROBOTICA

Unified Robot and Inertial Sensor Self-Calibration
Ferguson JM, Ertop TE, Herrell SD and Webster RJ
Robots and inertial measurement units (IMUs) are typically calibrated independently. IMUs are placed in purpose-built, expensive automated test rigs. Robot poses are typically measured using highly accurate (and thus expensive) tracking systems. In this paper, we present a quick, easy, and inexpensive new approach to calibrate both simultaneously, simply by attaching the IMU anywhere on the robot's end effector and moving the robot continuously through space. Our approach provides a fast and inexpensive alternative to both robot and IMU calibration, without any external measurement systems. We accomplish this using continuous-time batch estimation, providing statistically optimal solutions. Under Gaussian assumptions, we show that this becomes a nonlinear least squares problem and analyze the structure of the associated Jacobian. Our methods are validated both numerically and experimentally and compared to standard individual robot and IMU calibration methods.
Theoretical error analysis of spotlight-based instrument localization for retinal surgery
Zhou M, Hennerkes F, Liu J, Jiang Z, Wendler T, Nasseri MA, Iordachita I and Navab N
Retinal surgery is widely considered to be a complicated and challenging task even for specialists. Image-guided robot-assisted intervention is among the novel and promising solutions that may enhance human capabilities therein. In this paper, we demonstrate the possibility of using spotlights for 5D guidance of a microsurgical instrument. The theoretical basis of the localization for the instrument based on the projection of a single spotlight is analyzed to deduce the position and orientation of the spotlight source. The usage of multiple spotlights is also proposed to check the possibility of further improvements for the performance boundaries. The proposed method is verified within a high-fidelity simulation environment using the 3D creation suite Blender. Experimental results show that the average positioning error is 0.029 mm using a single spotlight and 0.025 mm with three spotlights, respectively, while the rotational errors are 0.124 and 0.101, which shows the application to be promising in instrument localization for retinal surgery.
Constrained Cyclic Coordinate Descent for Cryo-EM Images at Medium Resolutions: Beyond the Protein Loop Closure Problem
Nasr KA and He J
The cyclic coordinate descent (CCD) method is a popular loop closure method in protein structure modeling. It is a robotics algorithm originally developed for inverse kinematic applications. We demonstrate an effective method of building the backbone of protein structure models using the principle of CCD and a guiding trace. For medium-resolution 3-dimensional (3D) images derived using cryo-electron microscopy (cryo-EM), it is possible to obtain guiding traces of secondary structures and their skeleton connections. Our new method, constrained cyclic coordinate descent (CCCD), builds α-helices, β-strands, and loops quickly and fairly accurately along predefined traces. We show that it is possible to build the entire backbone of a protein fairly accurately when the guiding traces are accurate. In a test of 10 proteins, the models constructed using CCCD show an average of 3.91Å of backbone root mean square deviation (RMSD). When the CCCD method is incorporated in a simulated annealing framework to sample possible shift, translation, and rotation freedom, the models built with the true topology were ranked high on the list, with an average backbone RMSD100 of 3.76Å. CCCD is an effective method for modeling atomic structures after secondary structure traces and skeletons are extracted from 3D cryo-EM images.
Testing models of cerebellar ataxia via dynamic simulation
Grow D, Bastian AJ and Okamura AM
Patients with damage to the cerebellum make reaching movements that are uncoordinated or "ataxic." One prevailing hypothesis is that the cerebellum functions as an internal model for planning movements, and that damage to the cerebellum results in movements that do not properly account for arm dynamics. An exoskeleton robot was used to record multi-joint reaching movements. Subsequently, joint-torque trajectories were calculated and a gradient descent algorithm found optimal, patient-specific perturbations to actual limb dynamics predicted to reduce directional reaching errors by an average of 41%, elucidating a promising form of robotic intervention and adding support to the internal model hypothesis.
Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map
Park W, Liu Y, Zhou Y, Moses M and Chirikjian GS
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains
Lee K, Wang Y and Chirikjian GS
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.
The principle of superposition in human prehension
Zatsiorsky VM, Latash ML, Gao F and Shim JK
The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.