A Brief Note on Building Augmented Reality Models for Scientific Visualization
Augmented reality (AR) has revolutionized the video game industry by providing interactive, three-dimensional visualization. Interestingly, AR technology has only been sparsely used in scientific visualization. This is, at least in part, due to the significant technical challenges previously associated with creating and accessing such models. To ease access to AR for the scientific community, we introduce a novel visualization pipeline with which they can create and render AR models. We demonstrate our pipeline by means of finite element results, but note that our pipeline is generally applicable to data that may be represented through meshed surfaces. Specifically, we use two open-source software packages, ParaView and Blender. The models are then rendered through the platform, which we access through Android and iOS smartphones. To demonstrate our pipeline, we build AR models from static and time-series results of finite element simulations discretized with continuum, shell, and beam elements. Moreover, we openly provide python scripts to automate this process. Thus, others may use our framework to create and render AR models for their own research and teaching activities.
[Not Available]
The aim of this paper is to demonstrate that stochastic analyses can be performed on large and complex models within affordable costs. Stochastic analyses offer a much more realistic approach for analysis and design of components and systems although generally computationally demanding. Hence, resorting to efficient approaches and high performance computing is required in order to reduce the execution time.A general purpose software that provides an integration between deterministic solvers (i.e. finite element solvers), efficient algorithms for uncertainty management and high performance computing is presented. The software is intended for a wide range of applications, which includes optimization analysis, life-cycle management, reliability and risk analysis, fatigue and fractures simulation, robust design.The applicability of the proposed tools for practical applications is demonstrated by means of a number of case studies of industrial interest involving detailed models.
Automated subject-specific, hexahedral mesh generation via image registration
Generating subject-specific, all-hexahedral meshes for finite element analysis continues to be of significant interest in biomechanical research communities. To date, most automated methods "morph" an existing atlas mesh to match with a subject anatomy, which usually result in degradation in mesh quality because of mesh distortion. We present an automated meshing technique that produces satisfactory mesh quality and accuracy without mesh repair. An atlas mesh is first developed using a script. A subject-specific mesh is generated with the same script after transforming the geometry into the atlas space following rigid image registration, and is transformed back into the subject space. By meshing the brain in 11 subjects, we demonstrate that the technique's performance is satisfactory in terms of both mesh quality (99.5% of elements had a scaled Jacobian >0.6 while <0.01% were between 0 and 0.2) and accuracy (average distance between mesh boundary and geometrical surface was 0.07 mm while <1% greater than 0.5mm). The combined computational cost for image registration and meshing was <4 min. Our results suggest that the technique is effective for generating subject-specific, all-hexahedral meshes and that it may be useful for meshing a variety of anatomical structures across different biomechanical research fields.
Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations
Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved.