Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China
The late Ediacaran Dengying Formation (ca. 551.1-538.8 Ma) in South China is one of two successions where Ediacara-type macrofossils are preserved in carbonate facies along with skeletal fossils and bilaterian animal traces. Given the remarkable thickness of carbonate-bearing strata deposited in less than 12.3 million years, the Dengying Formation holds the potential for a relatively continuous chemostratigraphic profile for the terminal Ediacaran stage. In this study, a detailed sedimentological and chemostratigraphic (δC, δO, δC, δS, and Sr/Sr) investigation was conducted on the Dengying Formation at the Gaojiashan section, Ningqiang County of the southern Shaanxi Province, South China. Sedimentological results reveal an overall shallow marine depositional environment. Carbonate breccia, void-filling botryoidal precipitates, and aragonite crystal fans are common in the Algal Dolomite Member of the Dengying Formation, suggesting that peritidal facies were repeatedly karstified. The timing of karstification was likely early, probably soon after the deposition of the dolomite sediments. The presence of authigenic aragonite cements suggests high alkalinity in the terminal Ediacaran ocean. Geochemical analysis of micro-drilled samples shows that distinct compositions are registered in different carbonate phases, which should be considered when constructing chemostratigraphic profiles representative of true temporal variations in seawater chemistry. Integrated chemostratigraphic data suggest enhanced burial of organic carbon and pyrite, and the occurrence of extensive marine anoxia (at least in the Gaojiashan Member). Rapid basinal subsidence and carbonate accumulation during a time of elevated seawater alkalinity and increased rates of pyrite burial may have facilitated the evolutionary innovation of early biomineralizing metazoans.
A Vendian-Cambrian boundary succession from the northwestern margin of the Siberian Platform: stratigraphy, palaeontology, chemostratigraphy and correlation
Siberia contains several key reference sections for studies of biological and environmental evolution across the Proterozoic-Phanerozoic transition. The Platonovskaya Formation, exposed in the Turukhansk region of western Siberia, is an uppermost Proterozoic to Cambrian succession whose trace and body fossils place broad limits on the age of deposition, but do not permit detailed correlation with boundary successions elsewhere. In contrast, a striking negative carbon isotopic excursion in the lower part of the Platonovskaya Formation permits precise chemostratigraphic correlation with upper-most Yudomian successions in Siberia, and possibly worldwide. In addition to providing a tool for correlation, the isotopic excursion preserved in the Platonovskaya and contemporaneous successions documents a major biogeochemical event, likely involving the world ocean. The excursion coincides with the palaeontological breakpoint between Ediacaran- and Cambrian-style assemblages, suggesting a role for biogeochemical change in evolutionary events near the Proterozoic Cambrian boundary.
Discussion on chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA
Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA
Isotopic chemostratigraphy has proven successful in the correlation of carbonate-rich Neoproterozoic successions. In successions dominated by siliciclastic rocks, chemostratigraphy can be problematic, but if thin carbonates punctuate siliciclastic strata, useful isotopic data may be obtained. The upper Pocatello Formation and lower Brigham Group of southeastern Idaho provide an opportunity to assess the potential and limitations of isotopic chemostratigraphy in overwhelmingly siliciclastic successions. The 5000 m thick succession consists predominantly of siliciclastic lithologies, with only three intervals that contain thin intercalated carbonates. Its depositional age is only broadly constrained by existing biostratigraphic, sequence stratigraphic and geochronometric data. The lowermost carbonates include a cap dolomite atop diamictites and volcanic rocks of the Pocatello Formation. The delta 13C values of these carbonates are distintly negative (-5 to -3), similar to carbonates that overlie Neoproterozoic glaciogenic rocks worldwide. Stratigraphically higher carbonates record a major positive delta 13C excursion to values as high as +8.8 within the carbonate member of the Caddy Canyon Quartzite. The magnitude of this excusion is consistent with post-Sturtian secular variation recorded elsewhere in the North American Cordillera, Australia, Svalbard, Brazil and Nambia, and exceeds the magnitude of any post-Varanger delta 13C excursion documented to date. In most samples, Sr-isotopic abundances have been altered by diagenesis and greenschist facies metamorphism, but a least-altered value of approximately 0.7076 supports a post-Sturtian and pre-Marinoan/Varanger age for upper Pocatello and lower Brigham rocks that lie above the Pocatello diamictite. Thus, even though available chemostratigraphic data are limited, they corroborate correlations of Pocatello Formation diamictites and overlying units with Sturtian glaciogenic rocks and immediately post-Sturtian successions in western North America and elsewhere.
Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite 'Series', central East Greenland
Silicified flake conglomerates and in situ stratiform stromatolites of the Upper Proterozoic (c. 700-800 Ma) Limestone-Dolomite 'Series', central East Greenland, contain well preserved microfossils. Five stratigraphic horizons within the 1200 m succession contain microbial mat assemblages, providing a broad palaeontological representation of late Proterozoic peritidal mat communities. Comparison of assemblages demonstrates that the taxonomy and diversity of mat builder, dweller, and allochthonous populations all vary considerably within and among horizons. The primary mat builder in most assemblages is Siphonophycus inornatum, a sheath-forming prokaryote of probable but not unequivocally established cyanobacterial affinities. An unusual low diversity unit in Bed 17 is dominated by a different builder, Tenuofilum septatum, while a thin cryptalgal horizon in Bed 18 is built almost exclusively by Siphonophycus kestron. Although variable taphonomic histories contribute to observed assemblage variation, most differences within and among horizons appear to reflect the differential success or failure of individual microbial populations in colonizing different tidal flat microenvironments. Twenty-two taxa are recognized, of which two are described as new: Myxococcoides stragulescens n.sp. and Scissilisphaera gradata n. sp.
Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia
Carbonate-rich sedimentary rocks of the western Anabar region, northern Siberia, preserve an exceptional record of evolutionary and biogeochemical events near the Proterozoic/Cambrian boundary. Sedimentologically, the boundary succession can be divided into three sequences representing successive episodes of late transgressive to early highstand deposition; four parasequences are recognized in the sequence corresponding lithostratigraphically to the Manykal Formation. Small shelly fossils are abundant and include many taxa that also occur in standard sections of southeastern Siberia. Despite this coincidence of faunal elements, biostratigraphic correlations between the two regions have been controversial because numerous species that first appear at or immediately above the basal Tommotian boundary in southeastern sections have first appearances scattered through more than thirty metres of section in the western Anabar. Carbon- and Sr-isotopic data on petrographically and geochemically screened samples collected at one- to two-metre intervals in a section along the Kotuikan River, favour correlation of the Staraya Reckha Formation and most of the overlying Manykai Formation with sub-Tommotian carbonates in southeastern Siberia. In contrast, isotopic data suggest that the uppermost Manykai Formation and the basal 26 m of the unconformably overlying Medvezhya Formation may have no equivalent in the southeast; they appear to provide a sedimentary and palaeontological record of an evolutionarily significant time interval represented in southeastern Siberia only by the sub-Tommotian unconformity. Correlations with radiometrically dated horizons in the Olenek and Kharaulakh regions of northern Siberia suggest that this interval lasted approximately three to six million years, during which essentially all 'basal Tommotian' small shelly fossils evolved.