Aerospace

AEROM: NASA's Unsteady Aerodynamic and Aeroelastic Reduced-Order Modeling Software
Silva WA
The origins, development, implementation, and application of AEROM, NASA's patented reduced-order modeling (ROM) software, are presented. Full computational fluid dynamic (CFD) aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers using the NASA FUN3D CFD code, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. The method and software have been applied successfully to several configurations including the Lockheed-Martin N+2 supersonic configuration and the Royal Institute of Technology (KTH, Sweden) generic wind-tunnel model, among others. The software has been released to various organizations with applications that include CFD-based aeroelastic analyses and the rapid modeling of high-fidelity dynamic stability derivatives. Recent results obtained from the application of the method to the AGARD 445.6 wing will be presented that reveal several interesting insights.
A Dual Mode Propulsion System for Small Satellite Applications
Gagne KR, McDevitt MR and Hitt DL
This study focused on the development of a chemical micropropulsion system suitable for primary propulsion and/or attitude control for a nanosatellite. Due to the limitations and expense of current micropropulsion technologies, few nanosatellites with propulsion have been launched to date; however, the availability of such a propulsion system would allow for new nanosatellite mission concepts, such as deep space exploration, maneuvering in low gravity environments and formation flying. This work describes the design of "dual mode" monopropellant/bipropellant microthruster prototype that employs a novel homogeneous catalysis scheme. Results from prototype testing are reported that validate the concept. The micropropulsion system is designed to be fabricated using a combination of additively-manufactured and commercial off the shelf (COTS) parts along with non-toxic fuels, thus making it a low-cost and environmentally-friendly option for future nanosatellite missions.