MICROCIRCULATION

Microfluctuations in Capillary Lumens Independent of Pericyte Lining Density in the Anesthetized Mouse Cortex
Suzuki H, Murata J, Unekawa M, Kanno I, Izawa Y, Tomita Y, Tanaka KF, Nakahara J and Masamoto K
This study aimed to examine the spatiotemporal coherence of capillary lumen fluctuations in relation to spatial variations in the pericyte lining in the cortex of anesthetized mice.
Pressure-Induced Microvascular Reactivity With Whole Foot Loading Is Unique Across the Human Foot Sole
Howe EE and Bent LR
Foot sole plantar pressure generates transient but habitual cutaneous ischemia, which is even more exacerbated in atypical gait patterns. Thus, adequate post-occlusive reactive hyperaemia (PORH) is necessary to maintain skin health. Plantar pressure regional variance during daily tasks potentially generates region-specific PORH, crucial for ischemic defence.
PDE9A Inhibition Improves Coronary Microvascular Rarefaction and Left Ventricular Diastolic Dysfunction in the ZSF1 Rat Model of HFpEF
Fopiano KA, Zhazykbayeva S, El-Battrawy I, Buncha V, Pearson WM, Hardell DJ, Lang L, Hamdani N and Bagi Z
Heart failure with preserved ejection fraction (HFpEF) commonly arises from comorbid diseases, such as hypertension, obesity, and diabetes mellitus. Selective inhibition of phosphodiesterase 9A (PDE9A) has emerged as a potential therapeutic approach for treating cardiometabolic diseases. Coronary microvascular disease (CMD) is one of the key mechanisms contributing to the development of left ventricular (LV) diastolic dysfunction in HFpEF. Our study aimed to investigate the mechanisms by which PDE9A inhibition could ameliorate CMD and improve LV diastolic function in HFpEF.
Modeling Hemodynamics in Three-Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks
Ramanathan R, Borum A, Rooney DM and Rabbany SY
Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds.
Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease
Arroyo-Ataz G and Jones D
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Quantification of Video Sequences of the Microcirculation: A Comparison Between Automated Analysis Using Analysis Manager and Manual Analysis Using Capillary Mapper
Müller-Graf F, Wrede D, Bork L, Klinkmann G, Flick M, Reuter DA, Zitzmann AR, Böhm SH and Reuter S
Microcirculatory disturbances can contribute to organ dysfunction in patients undergoing major surgeries and critical illness. Incident dark field imaging (CytoCam, Braedius Medical BV, Huizen, Netherlands) provides direct visualization of the microcirculation. To utilize this method in daily clinical practice, automated image analysis is essential. This study aims to compare the automated analysis of recorded microcirculation video sequences using CytoCamTools V2 Analysis Manager (Braedius Medical BV) with established manual analysis using Capillary Mapper (Version 1.4.5, University Hospital Münster, Germany) as reference method.
Cerebral Microcirculation: Progress and Outlook of Laser Doppler Flowmetry in Neurosurgery and Neurointensive Care
Wårdell K, Richter J and Zsigmond P
Laser Doppler flowmetry (LDF) is a well-established technique for the investigation of tissue microcirculation. Compared to skin, the use in the human brain is sparse. The measurement of cerebral microcirculation in neurointensive care and during neurosurgery is challenging and requires adaptation to the respective clinical setting. The aim of the review is to present state of the art and progress in neurosurgery and neurointensive care where LDF has proven useful and can find clinical importance in the investigation of cerebral microcirculation. The literature in the field is summarized and recent technical improvements regarding LDF systems and fiber optical probe designs for neurosurgical and neurocritical care described. By combining two signals from the LDF unit, the measurement of the microcirculation (Perfusion) and gray whiteness (TLI) of the brain tissue, the full potential of the device is achieved. For example, a forward-looking LDF-probe detects high-risk hemorrhage areas and gray-white matter boundaries along intraoperative trajectories during stereotactic neurosurgery. Proof of principles are given for LDF as a guidance tool in deep brain stimulation implantation, brain tumor needle biopsies, and as long-term monitoring device in neurocritical care. With well-designed fiber optical probes, surgical fixation, and signal processing for movement reduction, LDF monitoring of the cerebral microcirculation is successful up to 10 days. The use of LDF can be combined with other physiological measurement techniques, for example, fluorescence spectroscopy for identification of glioblastoma during tumor surgery. Fiber optics can also be used during magnetic resonance imaging (MRI). Despite the many advantages, fiber optical LDF has not yet reached its full potential in clinical neuro-applications. Multicenter studies are required to further evaluate LDF in neurosurgery and neurointensive care. In conclusion, the present status of LDF in neurosurgery and neurointensive care has been reviewed. By combining Perfusion and TLI with tailored probe designs the full potential of LDF can be achived in measuring cerebral microcirculation. This includes guidance during DBS implantation and needle biopsies, and long-term monitoring in neurocritical care.
Effects of Beraprost on Intestinal Microcirculation and Barrier Function in a Mouse Model of Renal Failure
Hirano A, Kadoya H, Takasu M, Iwakura T, Kajimoto E, Tatsugawa R, Matsuura T, Kurumatani H, Yamamoto T, Kidokoro K, Kishi S, Nagasu H, Sasaki T and Kashihara N
Endothelial dysfunction plays an important role in the pathogenesis of chronic kidney disease. Prostacyclin (PGI), an endothelial cell-produced endogenous prostaglandin, plays a crucial role in maintaining endothelial function. However, its effects on intestinal microcirculation and barrier function are not fully understood. We hypothesized that PGI improves intestinal microcirculation and barrier function via endothelial protective effects.
Microcirculatory Perfusion Disturbances During Veno-Arterial Extracorporeal Membrane Oxygenation: A Systematic Review
Volleman C, Raasveld SJ, Jamaludin FS, Vlaar APJ and van den Brom CE
Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used in case of potentially reversible cardiac failure and restores systemic hemodynamics. However, whether this is followed by improvement of microcirculatory perfusion is unknown. Moreover, critically ill patients have possible pre-existing microcirculatory perfusion disturbances. Therefore, this review provides an overview of alterations in sublingual microcirculatory perfusion in critically ill adult patients receiving VA-ECMO support. Pubmed, Embase (Ovid), Cochrane Central Register of Controlled Trials, and Web of Science were systematically searched according to PRISMA guidelines. Studies reporting sublingual microcirculatory perfusion measurements in adult patients supported by VA-ECMO were included. Outcome parameters included small vessel density (SVD), perfused vessel density (PVD), perfused small vessel density (PSVD), proportion of perfused vessels (PPV), microvascular flow index (MFI) and the heterogeneity index (HI). The protocol was registered at PROSPERO (CRD42021243930). The search identified 1215 studies of which 11 were included. Cardiogenic shock was the most common indication for VA-ECMO (n=8). Three studies report increased PSVD, PPV, and MFI 24 hours after initiation of ECMO compared to pre-ECMO. Nonetheless, microcirculatory perfusion stabilized thereafter. Four out of four studies showed higher PSVD and PPV in survivors compared to non-survivors. Over time, survivors showed recovery of microcirculatory perfusion within hours of initiation of ECMO, whereas this was absent in non-survivors. Notwithstanding the limited sample, VA-ECMO seems to improve microcirculatory perfusion shortly after initiation of ECMO, especially in survivors. Further research in larger cohorts is needed to clarify the longitudinal effects of ECMO on microcirculatory perfusion.
Models of Hydration Dependent Lymphatic Opening, Interstitial Fluid Flows and Ambipolar Diffusion
Øien AH, Tenstad O and Wiig H
A theoretical understanding of fluid exchange and the role of initial lymph formation in tissues through mathematical/physical modeling is lacking.
Retinal Vessel Functional Responses in South Africans Living With and Without HIV: The EndoAfrica-NWU Study
Myburgh-Jacobsz CE, Botha-Le Roux S, Kotliar K, Wentzel A, Jacobs A, De Boever P, Goswami N, Strijdom H and Smith W
The effects of HIV and antiretroviral therapy (ART) on microvascular function are poorly explored. We compared retinal vessel functional responses to flicker light-induced provocation (FLIP) in people living with HIV (PLWH) and people living without HIV (PLWoutH).
Ninjin'yoeito Modulates Baseline and Reperfusion-Induced Changes in the Arteriole Diameter and Blood Flow in the Cerebral Cortex of Anesthetized Mice
Watanabe N, Iimura K and Hotta H
Intragastric administration of ninjin'yoeito (NYT), a traditional Japanese herbal medicine, reportedly prevents the decrease in baseline cerebral blood flow (CBF) in the cortex following gastric administration of water. We investigated the effect of NYT on baseline and dynamic changes in cerebral cortical arteriole diameter.
Different Measures of Hyperglycemia Are Negatively Associated With Skin Microvascular Flowmotion: The Maastricht Study
Zhao X, Schalkwijk C, Kroon A, Schram MT, Stehouwer C and Houben A
Diabetes can lead to microvascular complications such as diabetic neuropathy, nephropathy, and retinopathy. Hyperglycemia may initiate microvascular function impairment early in the course of diabetes, even prior to its clinical establishment during the pre-diabetes stage. Microvascular vasomotion, that is, the rhythmic arteriolar constriction and dilation, is an important function that regulates oxygen and nutrient delivery within the tissue and regulates peripheral resistance. Using laser Doppler flowmetry (LDF), vasomotion in skin microcirculation can be measured as flowmotion. Changes in flowmotion have been shown in individuals with obesity, and type 1 or type 2 diabetes mellitus. However, no data are available on associations between hyperglycemia and flowmotion in the general population. Our aim was to study whether measures of hyperglycemia were associated with different components of skin microvascular flowmotion (SMF) in a population-based cohort (The Maastricht Study).
Vascular Function and Ion Channels in Alzheimer's Disease
Taylor JL, Martin-Aragon Baudel M, Nieves-Cintron M and Navedo MF
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Imaging Hypoxia to Predict Primary Neuronal Cell Damage in Branch Retinal Artery Occlusion
Jamal SZ, Dieckmann BW, McCollum GW, Penn JS, Jayagopal A and Imam Uddin MD
To develop a reliable method to generate a mouse model of branch retinal artery occlusion (BRAO) using laser-induced thrombosis of a major artery in the mouse retina. Also, to develop a reliable method to detect retinal hypoxia as predictive biomarker for the risk of neuronal cell damage in BRAO.
Lymphatic Capillarization in Different Fiber Types of Rat Skeletal Muscles With Growth and Age
Taketa Y, Tamakoshi K, Hotta K, Maki S, Taguchi T and Takahashi H
To clarify the effect of growth and advancing age on lymphatic capillarization in rat skeletal muscles, we examined the histological and biochemical changes of lymphatic capillaries in different fiber types of skeletal muscles across juvenile, young, and middle-aged generations.
Brain Microvascular Pericyte Pathology Linking Alzheimer's Disease to Diabetes
El-Ghazawi K, Eyo UB and Peirce SM
The brain microvasculature, which delivers oxygen and nutrients and forms a critical barrier protecting the central nervous system via capillaries, is deleteriously affected by both Alzheimer's disease (AD) and type 2 diabetes (T2D). T2D patients have an increased risk of developing AD, suggesting potentially related microvascular pathological mechanisms. Pericytes are an ideal cell type to study for functional links between AD and T2D. These specialized capillary-enwrapping cells regulate capillary density, lumen diameter, and blood flow. Pericytes also maintain endothelial tight junctions to ensure blood-brain barrier integrity, modulation of immune cell extravasation, and clearance of toxins. Changes in these phenomena have been observed in both AD and T2D, implicating "pericyte pathology" as a common feature of AD and T2D. This review examines the mechanisms of AD and T2D from the perspective of the brain microvasculature, highlighting how pericyte pathology contributes to both diseases. Our review identifies voids in understanding how AD and T2D negatively impact the brain microvasculature and suggests future studies to examine the intersections of these diseases.
Tumor-Derived Exosomes Promote Tumor Growth Through Modulating Microvascular Hemodynamics in a Human Ovarian Cancer Xenograft Model
Wang Q, Zhang X, Li B, Liu X, Li A, Li H, Shi X and Han J
Abnormal tumor vascular network contributes to aberrant blood perfusion and reduced oxygenation in tumors, which lead to poor efficacy of chemotherapy and radiotherapy. We aimed to explore the effects of the tumor-derived exosomes (TDEs) and C188-9 (a small molecule inhibitor of signal transducer and activator of transcription 3, STAT3) on tumor microvascular hemodynamics and determine which blood flow oscillations for various frequency intervals are responsible for these changes.
Hemodynamic Characteristics of a Tortuous Microvessel Using High-Fidelity Red Blood Cell Resolved Simulations
Hossain MMN, Hu NW, Kazempour A, Murfee WL and Balogh P
Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three-dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near-wall cell-free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel.
Fluid-Dynamic Modeling of Flow in Embryonic Tissue Indicates That Lymphatic Valve Location Is Not Consistently Determined by the Local Fluid Shear or Its Gradient
Bertram CD and Macaskill C
Intravascular lymphatic valves often occur in proximity to vessel junctions. It is commonly held that disturbed flow at junctions is responsible for accumulation of valve-forming cells (VFCs) at these locations as the initial step in valve creation, and the one which explains the association with these sites. However, evidence in favor is largely limited to cell culture experiments.
Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock
Li K, Li Y, Chen Y, Chen T, Yang Y and Li P
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K channels, Ca permeable channels, and Na channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.