Effect of NaCl and NaSO on Low Temperature Corrosion of Vapour- and Pack-Aluminide Coated Single Crystal Turbine Blade Alloys CMSX-4 and RR3010
The current work presents a systematic study of two alloy compositions (RR3010 and CMSX-4) and two types of coatings: inward grown (pack) and outward grown (vapour) deposited aluminides, exposed to 98NaSO-2NaCl mixture. Grit blasting was used on some of the samples, prior to coating, to mimic in-service procedures and remove oxides from the surface prior to coating. Two-point bend tests were then performed on the coated samples, with and without applied salt at 550 °C for 100 hours. Samples were pre-strained at 0.6 pct strain to deliberately pre-crack the coating and then strained at 0.3 pct for the heat treatment. Exposure to 98NaSO-2NaCl under applied stress of vapour-aluminide coated samples of both alloys, revealed significant coating damage in the form of secondary cracks in the intermetallic-rich inter-diffusion zone, although only CMSX-4 exhibited cracks propagating further into the bulk alloy while RR3010 proved more resistant. The pack-aluminide coating proved more protective for both alloys, with cracks propagating only into the coating and never into the underlying alloy. In addition, grit blasting proved beneficial in reducing spallation and cracking for both types of coating. The findings were used to propose a mechanism based on thermodynamic reactions, to explain the crack width changes through the formation of volatile AlCl in the cracks.
Highly Ductile Zn-2Fe-WC Nanocomposite as Biodegradable Material
Zinc (Zn) has been widely investigated as a biodegradable metal for orthopedic implants and vascular stents due to its ideal corrosion in vivo and biocompatibility. However, pure Zn lacks adequate mechanical properties for load-bearing applications. Alloying elements, such as iron (Fe), have been shown to improve the strength significantly, but at the cost of compromised ductility and corrosion rate. In this study, tungsten carbide (WC) nanoparticles were incorporated into the Zn-2Fe alloy system for strengthening, microstructure modification, and ductility enhancement. Thermally stable WC nanoparticles modified the intermetallic ζ-FeZn interface morphology from faceted to non-faceted. Consequently, WC nanoparticles simultaneously enhance mechanical strength and ductility while maintaining a reasonable corrosion rate. Overall, this novel Zn-Fe-WC nanocomposite could be used as biodegradable material for biomedical applications where pure Zn is inadequate.
Nitrogen Effects in Additively Manufactured Martensitic Stainless Steels: Conventional Thermal Processing and Comparison with Wrought
The microstructures of additively manufactured (AM) precipitation-hardenable stainless steels 17-4 and 15-5 were investigated and compared to those of conventionally produced materials. The residual N found in N-atomized 17-4 powder feedstock is inherited by the additively produced material, and has dramatic effects on phase stability, microstructure, and microstructural evolution. Nitrogen is a known austenite stabilizing element, and the as-built microstructure of AM 17-4 can contain up to 90 pct or more retained austenite, compared to the nearly 100 pct martensite structure of wrought 17-4. Even after homogenization and solutionization heat treatments, AM 17-4 contains 5 to 20 pct retained austenite. In contrast, AM 15-5 and Ar-atomized AM 17-4 contain<5 pct retained austenite in the as-built condition, and this level is further decreased following post-build thermal processing. Computational thermodynamics-based calculations qualitatively describe the observed depression in the martensite start temperature and martensite stability as a function of N-content, but require further refinements to become quantitative. A significant increase in the volume fraction of fine-scale carbide precipitates attributed to the high N-content of AM 17-4 is also hypothesized to give rise to additional activation barriers for the dislocation motion required for martensite nucleation and subsequent growth. An increase in the volume fraction of carbide/nitride precipitates is observed in AM 15-5, although they do not inhibit martensite formation to the extent observed in AM 17-4.
Formation of the NiNb δ-phase in stress-relieved Inconel 625 produced via laser powder-bed fusion additive manufacturing
The microstructural evolution of laser powder-bed additively manufactured Inconel 625 during a post-build stress-relief anneal of 1 h at 1143 K (870 °C) is investigated. It is found that this industry-recommended heat treatment promotes the formation of a significant fraction of the orthorhombic D0 NiNb δ-phase. This phase is known to have a deleterious influence on fracture toughness, ductility, and other mechanical properties in conventional, wrought Inconel 625; and is generally considered detrimental to materials' performance in service. The δ-phase platelets are found to precipitate within the inter-dendritic regions of the as-built solidification microstructure. These regions are enriched in solute elements, particularly Nb and Mo, due to the micro-segregation that occurs during solidification. The precipitation of δ-phase at 1073 K (800 °C) is found to require up to 4 h. This indicates a potential alternative stress-relief processing window that mitigates δ-phase formation in this alloy. Ultimately, a homogenization heat treatment is recommended for additively manufactured Inconel 625 because the increased susceptibility to δ-phase precipitation increases the possibility for significant degradation of materials properties in service.
Application of computational thermodynamics to the design of a Co-Ni-based γ'-strengthened superalloy
A currently available commercial Calphad thermodynamic database was utilized to investigate its applicability to alloy design in the new class of Co-Ni-based γ'-strengthened high temperature alloys. A simple primary design criterion was chosen: maximize the γ' solvus temperature in the six-component Co-Ni-Al-Ti-W-Ta system while ensuring no formation of secondary, potentially deleterious phases. Secondary design considerations included the effects of alloying elements on equilibrium γ' volume fraction and on solidus and liquidus temperatures. The identified composition, Co-30Ni-9Al-3Ti-7W-2Ta-0.1B (expressed in mole percent), representing a conservative estimate of the maximum allowable concentrations of alloying additions Al, Ti, W, and Ta, was subsequently produced and characterized. The experimentally measured γ' solvus temperature of the new alloy was 1491±3 K (1218±3 °C), about 35 K above any previously reported two-phase γ-γ' Co-(Ni)-based alloy. No secondary phases were observed in the alloy after annealing at temperatures between 1173 K and 1473 K (900 °C and 1200 °C). Additional alloy compositions with experimentally measured γ' solvus temperatures in excess of 1533 K (1260 °C) were also identified employing the same basic approach. The efficacy of currently available thermodynamic databases in their application to Co-based γ'-strengthened superalloy development is discussed, including expanding design efforts to include additional alloying elements, as well as specific areas for improvement of future databases.
The Influence of Annealing Temperature and Time on the Formation of -Phase in Additively-Manufactured Inconel 625
This research evaluated the kinetics of -phase growth in laser powder bed additively-manufactured (AM) Inconel 625 during post-build stress-relief heat treatments. The temperatures ranged between 650°C and 1050°C, and the times from 0.25 to 168 hours. The presence of -phase was verified for each temperature/time combination through multiple techniques. A conventional time-temperature-transformation diagram was constructed from the time-temperature data. Comparison to the growth in wrought IN625 with a similar nominal composition revealed that -phase formation occurred at least two orders of magnitude faster in the AM IN625. The results of this study also revealed that the segregated microstructure in the as-built condition has a strong influence on the kinetics of -phase formation in AM IN625 as compared to a homogenized material. Since control of the -phase growth is essential for reliable prediction of the performance of IN625 components in service, avoiding heat treatments that promote the formation of -phase in AM components that are not homogenized is highly recommended. This will be particularly true at elevated temperatures where the microstructural stability and the consistency of mechanical properties are more likely to be affected by the presence of -phase.
Solidification of Ni-Re Peritectic Alloys
Differential thermal analysis (DTA) and microstructural and microprobe measurements of DTA and as-cast Ni-Re alloys with compositions between 0.20 and 0.44 mass fraction Re provide information to resolve differences in previously published Ni-Re phase diagrams. This investigation determines that the peritectic invariant between liquid, Re-rich hexagonal close packed and Ni-rich face center cubic phases, L + HCP → FCC, occurs at 1561.1 °C ± 3.4 °C (1) with compositions of liquid, FCC and HCP phases of 0.283 ± 0.036, 0.436 ± 0.026, and 0.828 ± 0.037 mass fraction Re, respectively. Analysis of the microsegregation in FCC alloys yields a partition coefficient for solidification, = 1.54 ± 0.09 (mass frac./mass frac.). A small deviation from Scheil behavior due to dendrite tip kinetics is documented in as-cast samples. No evidence of an intermetallic phase is observed.
Simulation of TTT Curves for Additively Manufactured Inconel 625
The ability to use common computational thermodynamic and kinetic tools to study the microstructure evolution in Inconel 625 (IN625) manufactured using the additive manufacturing (AM) technique of laser powder-bed fusion is evaluated. Solidification simulations indicate that laser melting and re-melting during printing produce highly segregated interdendritic regions. Precipitation simulations for different degrees of segregation show that the larger the segregation, i.e., the richer the interdendritic regions are in Nb and Mo, the faster the -phase (NiNb) precipitation. This is in accordance with the accelerated d precipitation observed experimentally during post-build heat treatments of AM IN625 compared to wrought IN625. The -phase may be undesirable since it can lead to detrimental effects on the mechanical properties. The results are presented in the form of a TTT diagram and agreement between the simulated diagram and the experimental TTT diagram demonstrate how these computational tools can be used to guide and optimize post-build treatments of AM materials.