Journal of Marine Science and Engineering

Autonomous Water Sampler for Oil Spill Response
Gomez-Ibanez D, Kukulya AL, Belani A, Conmy RN, Sundaravadivelu D and DiPinto L
A newly developed water sampling system enables autonomous detection and sampling of underwater oil plumes. The Midwater Oil Sampler collects multiple 1-L samples of seawater when preset criteria are met. The sampler has a hydrocarbon-free sample path and can be configured with several modules of six glass sample bottles. In August 2019, the sampler was deployed on an autonomous underwater vehicle and captured targeted water samples in natural oil seeps offshore Santa Barbara, CA, USA.
Intestine Explants in Organ Culture: A Tool to Broaden the Regenerative Studies in Echinoderms
Bello SA and García-Arrarás JE
The cellular events underlying intestine regrowth in the sea cucumber have been described by our group. Currently, the molecular and signaling mechanisms involved in this process are being explored. One of the limitations to our investigations has been the absence of suitable cell culture methodologies, required to advance the regeneration studies. An system, where regenerating intestine explants can be studied in organ culture, was established previously by our group. However, a detailed description of the histological properties of the cultured gut explants was lacking. Here, we used immunocytochemical techniques to study the potential effects of the culture conditions on the histological characteristics of explants, comparing them to the features observed during gut regeneration in our model . Additionally, the explant outgrowths were morphologically described by phase-contrast microscopy and SEM. Remarkably, intestine explants retain most of their original histoarchitecture for up to 10 days, with few changes as culture time increases. The most evident effects of the culture conditions on explants over culture time were the reduction in the proliferative rate, the loss of the polarity in the localization of proliferating cells, and the appearance of a subpopulation of putative spherulocytes. Finally, cells that migrated from the gut explants could form net-like monolayers, firmly attached to the culture substrate. Overall, regenerating explants in organ culture represent a powerful tool to perform short-term studies of processes associated with gut regeneration in under controlled conditions.
Metal Bioaccumulation by Estuarine Food Webs in New England, USA
Chen CY, Ward DM, Williams JJ and Fisher NS
Evaluating the degree of metal exposure and bioaccumulation in estuarine organisms is important for understanding the fate of metals in estuarine food webs. We investigated the bioaccumulation of Hg, methylmercury (MeHg), Cd, Se, Pb, and As in common intertidal organisms across a watershed urbanization gradient of coastal marsh sites in New England to relate metal exposure and bioaccumulation in fauna to both chemical and ecological factors. In sediments, we measured metal and metalloid concentrations, total organic carbon (TOC) and SEM-AVS (Simultaneously extracted metal-acid volatile sulfides). In five different functional feeding groups of biota, we measured metal concentrations and delta N and delta C signatures. Concentrations of Hg and Se in biota for all sites were always greater than sediment concentrations whereas Pb in biota was always lower. There were positive relationships between biota Hg concentrations and sediment concentrations, and between biota MeHg concentrations and both pelagic feeding mode and trophic level. Bioavailability of all metals measured as SEM-AVS or Benthic-Sediment Accumulation Factor was lower in more contaminated sites, likely due to biogeochemical factors related to higher levels of sulfides and organic carbon in the sediments. Our study demonstrates that for most metals and metalloids, bioaccumulation is metal specific and not directly related to sediment concentrations or measures of bioavailability such as AVS-SEM.