Volcanic electrification: recent advances and future perspectives
The electrification of volcanic plumes has been described intermittently since at least the time of Pliny the Younger and the 79 AD eruption of Vesuvius. Although sometimes disregarded in the past as secondary effects, recent work suggests that the electrical properties of volcanic plumes reveal intrinsic and otherwise inaccessible parameters of explosive eruptions. An increasing number of volcanic lightning studies across the last decade have shown that electrification is ubiquitous in volcanic plumes. Technological advances in engineering and numerical modelling, paired with close observation of recent eruptions and dedicated laboratory studies (shock-tube and current impulse experiments), show that charge generation and electrical activity are related to the physical, chemical, and dynamic processes underpinning the eruption itself. Refining our understanding of volcanic plume electrification will continue advancing the fundamental understanding of eruptive processes to improve volcano monitoring. Realizing this goal, however, requires an interdisciplinary approach at the intersection of volcanology, atmospheric science, atmospheric electricity, and engineering. Our paper summarizes the rapid and steady progress achieved in recent volcanic lightning research and provides a vision for future developments in this growing field.
Complex geometry of volcanic vents and asymmetric particle ejection: experimental insights
Explosive volcanic eruptions eject a gas-particle mixture into the atmosphere. The characteristics of this mixture in the near-vent region are a direct consequence of the underlying initial conditions at fragmentation and the geometry of the shallow plumbing system. Yet, it is not possible to observe directly the sub-surface parameters that drive such eruptions. Here, we use scaled shock-tube experiments mimicking volcanic explosions in order to elucidate the effects of a number of initial conditions. As volcanic vents can be expected to possess an irregular geometry, we utilise three vent designs, two "complex" vents and a vent with a "real" volcanic geometry. The defining geometry elements of the "complex" vents are a bilateral symmetry with a slanted top plane. The "real" geometry is based on a photogrammetric 3D model of an active volcanic vent with a steep and a diverging vent side. Particle size and density as well as experimental pressure are varied. Our results reveal a strong influence of the vent geometry, on both the direction and the magnitude of particle spreading and the velocity of particles. The overpressure at the vent herby controls the direction of the asymmetry of the gas-particle jet. These findings have implications for the distribution of volcanic ejecta and resulting areas at risk.
Large-scale demonstration of machine learning for the detection of volcanic deformation in Sentinel-1 satellite imagery
Radar (SAR) satellites systematically acquire imagery that can be used for volcano monitoring, characterising magmatic systems and potentially forecasting eruptions on a global scale. However, exploiting the large dataset is limited by the need for manual inspection, meaning timely dissemination of information is challenging. Here we automatically process ~ 600,000 images of > 1000 volcanoes acquired by the Sentinel-1 satellite in a 5-year period (2015-2020) and use the dataset to demonstrate the applicability and limitations of machine learning for detecting deformation signals. Of the 16 volcanoes flagged most often, 5 experienced eruptions, 6 showed slow deformation, 2 had non-volcanic deformation and 3 had atmospheric artefacts. The detection threshold for the whole dataset is 5.9 cm, equivalent to a rate of 1.2 cm/year over the 5-year study period. We then use the large testing dataset to explore the effects of atmospheric conditions, land cover and signal characteristics on detectability and find that the performance of the machine learning algorithm is primarily limited by the quality of the available data, with poor coherence and slow signals being particularly challenging. The expanding dataset of systematically acquired, processed and flagged images will enable the quantitative analysis of volcanic monitoring signals on an unprecedented scale, but tailored processing will be needed for routine monitoring applications.
The 2.6-2.3 ka explosive eruptive period of the Pululahua dome complex, Ecuador: insights from pyroclast analysis
Pululahua is an active volcano located 15 km north of Quito, Ecuador, that comprises sixteen dacitic-andesitic lava domes and a 13 km sub-rectangular depression formed between ~ 2.6 and ~ 2.3 ka. We use a detailed study of 70 flow and fall deposits that make up the pyroclastic sequence to show that the depression, previously classified as a caldera, was formed by numerous Vulcanian to (sub-) Plinian eruptions that destroyed both earlier and co-eruptive lava domes. We support this interpretation with field work, analysis of grain size distributions, density and components of 24 key deposits, supplemented by textural and petrologic analyses of 16 juvenile pyroclasts from throughout the pyroclastic sequence. These data document an alternation of (sub-) Plinian and Vulcanian eruptions dominated by denser juvenile material that preserves microtextural variations indicating changes in shallow level magma storage accompanying Vulcanian explosions. An exploratory examination of phenocryst textures and plagioclase and amphibole rim compositions suggests that much of the eruptive activity was driven by repeated inputs of less evolved magma into the Pululahua magmatic system. The inferred sequence of events provides a new hypothesis for the formation of the current morphology of Pululahua, including multiple episodes of both effusive and explosive eruptions accompanied by vent migration. Our findings offer an important insight into Pululahua's potential future hazard scenarios, which could affect millions of people.
Stratigraphic reconstruction of the Víti breccia at Krafla volcano (Iceland): insights into pre-eruptive conditions priming explosive eruptions in geothermal areas
Krafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the Mývatn (1724‒1729) and Krafla Fires (1975-1984). The Mývatn Fires opened with a steam-driven eruption that produced the Víti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting Víti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from Víti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the Víti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the Víti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone "cap" via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (~ 200 m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex "cap". At the same time, deep-rooted explosions (~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s).
The last 1100 years of activity of La Fossa caldera, Vulcano Island (Italy): new insights into stratigraphy, chronology, and landscape evolution
A detailed study of past eruptive activity is crucial to understanding volcanic systems and associated hazards. We present a meticulous stratigraphic analysis, a comprehensive chronological reconstruction, thorough tephra mapping, and a detailed analysis of the interplay between primary and secondary volcanic processes of the post-900 AD activity of La Fossa caldera, including the two main systems of La Fossa volcano and Vulcanello cones (Vulcano Island, Italy). Our analyses demonstrate how the recent volcanic activity of La Fossa caldera is primarily characterized by effusive and Strombolian activity and Vulcanian eruptions, combined with sporadic sub-Plinian events and both impulsive and long-lasting phreatic explosions, all of which have the capacity to severely impact the entire northern sector of Vulcano island. We document a total of 30 eruptions, 25 from the La Fossa volcano and 5 from Vulcanello cones, consisting of ash to lapilli deposits and fields of ballistic bombs and blocks. Volcanic activity alternated with significant erosional phases and volcaniclastic re-sedimentation. Large-scale secondary erosion processes occur in response to the widespread deposition of fine-grained ash blankets, both onto the active cone of La Fossa and the watersheds conveying their waters into the La Fossa caldera. The continuous increase in ground height above sea level, particularly in the western sector of the caldera depression where key infrastructure is situated, is primarily attributed to long-term alluvial processes. We demonstrate how a specific methodological approach is key to the characterization and hazard assessment of low-to-high intensity volcanic activity, where tephra is emitted over long time periods and is intercalated with phases of erosion and re-sedimentation.
The magmatic evolution of South-East Crater (Mt. Etna) during the February-April 2021 sequence of lava fountains from a mineral chemistry perspective
The South-East Crater (SEC) at Mt. Etna started a period of lava fountaining in December 2020, producing over 60 paroxysms until February 2022. The activity had an intense sequence from February 16 to April 1, 2021, totaling 17 paroxysmal events separated by repose times varying from 1 to 7 days. The eruptive sequence was extensively monitored, providing a unique opportunity to relate the chemistry and texture of the erupted products to eruption dynamics. We investigate the temporal evolution of the magmatic system through this eruptive sequence by quantifying variations in the composition and texture of clinopyroxene. Clinopyroxene major element transects across crystals from five representative lava fountains allow us to determine the relative proportions of deep versus shallow-stored magmas that fed these events. We use hierarchical clustering (HC), an unsupervised machine learning technique, to objectively identify clinopyroxene compositional clusters and their variations during this intense eruptive phase. Our results show that variations of monitoring parameters and eruption intensity are expressed in the mineral record both as changes in cluster proportions and the chemical complexity of single crystals. We also apply random forest thermobarometry to relate each cluster to P-T conditions of formation. We suggest that the February-April 2021 eruptive sequence was sustained by the injection of a hotter and deeper magma into a storage area at 1-3 kbar, where it mixed with a slightly more evolved magma. The February 28 episode emitted the most mafic magma, in association with the highest mean lava fountain height and highest time-averaged discharge rate, which make it the peak of the analyzed eruptive interval. Our results show that after this episode, the deep magma supply decreased and the erupted magma become gradually more chemically evolved, with a lower time-average discharge rate and fountain height. We propose this approach as a means to rapidly, objectively, and effectively link petrological and geophysical/geochemical monitoring during ongoing eruptions. We anticipate that the systematic application of this approach will serve to shed light on the magmatic processes controlling the evolution of ongoing eruptions.
Analysis of the 2020 Taal Volcano tephra fall deposits from crowdsourced information and field data
After 43 years of dormancy, Taal Volcano violently erupted in January 2020 forming a towering eruption plume. The fall deposits covered an area of 8605 km, which includes Metro Manila of the National Capital Region of the Philippines. The tephra fall caused damage to crops, traffic congestion, roof collapse, and changes in air quality in the affected areas. In a tropical region where heavy rains are frequent, immediate collection of data is crucial in order to preserve the tephra fall deposit record, which is readily washed away by surface water runoff and prevailing winds. Crowdsourcing, field surveys, and laboratory analysis of the tephra fall deposits were conducted to document and characterize the tephra fall deposits of the 2020 Taal Volcano eruption and their impacts. Results show that the tephra fall deposit thins downwind exponentially with a thickness half distance of about 1.40 km and 9.49 km for the proximal and distal exponential segments, respectively. The total calculated volume of erupted fallout deposit is 0.057 km, 0.042 km, or 0.090 km using the exponential, power-law, and Weibull models, respectively, and all translate to a VEI of 3. However, using a probabilistic approach (Weibull method) with 90% confidence interval, the volume estimate is as high as 0.097 km. With the addition of the base surge deposits amounting to 0.019 km, the volume translates to a VEI of 4, consistent with the classification for the observed height and umbrella radius of the 2020 main eruption plume. VEI 4 is also consistent with the calculated median eruption plume height of 17.8 km and sub-plinian classification based on combined analysis of isopleth and isopach data. Phreatomagmatic activity originated from a vent located in Taal Volcano's Main Crater Lake (MCL), which contained 42 million m of water. This eruptive style is further supported by the characteristics of the ash grain components of the distal 12 January 2020 tephra fall deposits, consisting dominantly of andesitic vitric fragments (83-90%). Other components of the fall deposits are lithic (7-11%) and crystal (less than 6%) grains. Further textural and geochemical analysis of these tephra fall deposits contributes to better understand the volcanic processes that occurred at Taal Volcano, one of the 16 Decade Volcanoes identified by the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) because of its destructive nature and proximity to densely populated areas. The crowdsourcing initiative provided a significant portion of the data used for this study while at the same time educating and empowering the community to build resilience.
The porosity of felsic pyroclasts: laboratory validation of field-based approaches
Volcanic eruptions are driven by magma rising through Earth's crust. The style of an eruption depends on intrinsic and extrinsic parameters and is commonly a dynamic process. Thorough and holistic investigation of the related products is key to understanding eruptive phenomena and assessment of volcano-specific hazards. Models of such phenomena are constrained by quantification of the dispersal, the grain size distribution, and pyroclast textures. Pyroclast texture may be described in part by measurements of density and porosity, which depend on pyroclast volume determination. Yet volume determination of irregularly shaped pyroclasts cannot be achieved with geometrical laws, instead necessitating the use of alternative methodologies. Here, we test three methodologies to quantify pyroclast volume on a set of clasts collected from the Minoan eruption deposits from Santorini, Greece. We compare (1) a manual method for obtaining the lengths of three orthogonal axes of the pyroclast with a caliper, (2) an optical method to measure the longest and shortest axes of the pyroclast via multiple photographs, and (3) an Archimedean buoyancy-based method. While the optical and manual methods provide almost identical values of pyroclast volume when tested under laboratory conditions, there is a discrepancy between these two methods and the Archimedean method, which produces an overestimation of ca. 13% in volume. This discrepancy has little impact on the subsequent assessment of porosity and density for which the natural variability of values is observed to be broader. We therefore propose using the manual approach in the field as a simple and fast, yet reliable, method to obtain large volumes of quantitative data on the texture of erupted products, and we also provide a correction factor for in-field volume assessment of rhyodacitic pumices.
Impact of the tsunami caused by the Hunga Tonga-Hunga Ha'apai eruption in Costa Rica on 15 January 2022
Hunga Tonga-Hunga Ha'apai had a large eruption (VEI 5-6) on 15 January 2022, which caused a tsunami recorded in all ocean basins. Costa Rica has made many advances in tsunami preparation over the past 9 years since the creation of SINAMOT (, National Tsunami Monitoring System), both on watch and warning protocols and on community preparedness. For the Hunga Tonga-Hunga Ha'apai event, the government declared a low-threat warning, suspending all in-water activities, even though the country did not receive any official warning from PTWC (Pacific Tsunami Warning Center) due to the lack of procedures for tsunamis generated by volcanoes. The tsunami was observed at 24 locations on both the Pacific and Caribbean coasts of Costa Rica, becoming the second most recorded tsunami in the country, after the 1991 Limon tsunami along the Caribbean coast. At 22 of those locations along the continental Pacific coast, observations were made by eyewitnesses, including one collocated with the sea level station at Quepos, which registered the tsunami. At Cocos Island (~ 500 km southwest of the continental Costa Rica, in the Pacific Ocean), several eyewitnesses reported the tsunami at two locations, and it was recorded at the sea level station. The tsunami was also recorded at the sea level station on the Caribbean coast. The tsunami effects reported were a combination of sea level fluctuations, strong currents, and coastal erosion, proving that the response actions were adequate for the size of the tsunami. Tsunami preparedness and the largest waves arriving during a dry season Saturday afternoon allowed the large number of eyewitness reports. This event then increased tsunami awareness in the country and tested protocols and procedures. Still, many people along the coast were not informed of the tsunami during the alert due to their remote location, the short notice of the warning, and a lack of procedures for some communities. There is thus still much work to do, particularly about warning dissemination, a direction in which communities should take an active role.
How well do concentric radii approximate population exposure to volcanic hazards?
Effective risk management requires accurate assessment of population exposure to volcanic hazards. Assessment of this exposure at the large-scale has often relied on circular footprints of various sizes around a volcano to simplify challenges associated with estimating the directionality and distribution of the intensity of volcanic hazards. However, to date, exposure values obtained from circular footprints have never been compared with modelled hazard footprints. Here, we compare hazard and population exposure estimates calculated from concentric radii of 10, 30 and 100 km with those calculated from the simulation of dome- and column-collapse pyroclastic density currents (PDCs), large clasts, and tephra fall across Volcanic Explosivity Index (VEI) 3, 4 and 5 scenarios for 40 volcanoes in Indonesia and the Philippines. We found that a 10 km radius-considered by previous studies to capture hazard footprints and populations exposed for VEI ≤ 3 eruptions-generally overestimates the extent for most simulated hazards, except for column collapse PDCs. A 30 km radius - considered representative of life-threatening VEI ≤ 4 hazards-overestimates the extent of PDCs and large clasts but underestimates the extent of tephra fall. A 100 km radius encapsulates most simulated life-threatening hazards, although there are exceptions for certain combinations of scenario, source parameters, and volcano. In general, we observed a positive correlation between radii- and model-derived population exposure estimates in southeast Asia for all hazards except dome collapse PDC, which is very dependent upon topography. This study shows, for the first time, how and why concentric radii under- or over-estimate hazard extent and population exposure, providing a benchmark for interpreting radii-derived hazard and exposure estimates.
The spatiotemporal evolution of compound impacts from lava flow and tephra fallout on buildings: lessons from the 2021 Tajogaite eruption (La Palma, Spain)
The simultaneous or sequential occurrence of several hazards-be they of natural or anthropogenic sources-can interact to produce unexpected hazards and impacts. Since success in responding to volcanic crises is often conditional on accurate identification of spatiotemporal patterns of hazard prior to an eruption, ignoring these interactions can lead to a misrepresentation or misinterpretation of the risk and, during emergencies, ineffective management priorities. The 2021 eruption of Tajogaite volcano on the island of La Palma, Canary Islands (Spain), was an 86 day-long hybrid explosive-effusive eruption that demonstrated the challenges of managing volcanic crises associated with the simultaneous emission of lava, tephra and volcanic gases. Here, we present the result of a small-scale impact assessment conducted during three-field deployments to investigate how tephra fallout and lava flow inundation interacted to cause compound physical impact on buildings. The study area was a neighbourhood of 30 buildings exposed to tephra fallout during the entire eruption and by a late-stage, short-lived lava flow. Observations highlight, on one hand, the influence of clean-up operations and rainfall on the impact of tephra fallout and, on the other hand, the importance of the dynamics of lava flow emplacement in controlling impact mechanisms. Overall, results provide an evidence-based insight into impact sequences when two primary hazards are produced simultaneously and demonstrate the importance of considering this aspect when implementing risk mitigation strategies for future long-lasting, hybrid explosive-effusive eruptions in urban environments.
'
Volcanic islands are often subject to flank instability, resulting from a combination of magmatic intrusions along rift zones and gravitational spreading causing extensional faulting at the surface. Here, we study the Koa'e fault system (KFS), located south of the summit caldera of Kīlauea volcano in Hawai'i, one of the most active volcanoes on Earth, prone to active faulting, episodic dike intrusions, and flank instability. Two rift zones and the KFS are major structures controlling volcanic flank instability and magma propagation. Although several magmatic intrusions occurred over the KFS, the link between these faults, two nearby rift zones and the flank instability, is still poorly studied. To better characterize the KFS and its structural linkage with the surrounding fault and rift zones, we performed a detailed structural analysis of the extensional fault system, coupled with a helicopter photogrammetric survey, covering part of the south flank of Kīlauea. We generated a high-resolution DEM (~ 8 cm) and orthomosaic (~ 4 cm) to map the fracture field in detail. We also collected ~ 1000 ground structural measurements of extensional fractures during our three field missions (2019, 2022, and 2023). We observed many small, interconnected grabens, monoclines, rollover structures, and en-echelon fractures that were in part previously undocumented. We estimate the cumulative displacement rate across the KFS during the last 600 ~ 700 years and found a decrease toward the west of the horizontal component from 2 to 6 cm per year, consistent with GNSS data. Integrating morphology observations, fault mapping, and kinematic measurements, we propose a new kinematic model of the upper part of the Kīlauea's south flank, suggesting a clockwise rotation and a translation of a triangular wedge. This wedge is bordered by the extensional structures (ERZ, SWRZ, and the KFS), largely influenced by gravitational spreading. These findings illustrate a structural linkage between the two rift zones and the KFS, the latter being episodically affected by dike intrusions.
Communication when it is needed most-the past, present and future of volcano geoheritage
Our understanding of volcanoes and volcanic systems has been communicated through legends maintained by indigenous communities and books and journal articles for the scientific community and for the public. Today we have additional means to communicate knowledge and information, such as social media, films, videos and websites. To build on these mechanisms, we propose a comprehensive system of information collection and dissemination which will impact and benefit scientists, officials and politicians, students and the public at large. This system comprises (1) an information web for broad understanding of volcano systems and volcanology, and (2) a second web for individual volcanoes. This integrated geoheritage approach provides a template for information dissemination and exchange in the twenty-first century.
Coordinating science during an eruption: lessons from the 2020-2021 Kīlauea volcanic eruption
Data collected during well-observed eruptions can lead to dramatic increases in our understanding of volcanic processes. However, the necessary prioritization of public safety and hazard mitigation during a crisis means that scientific opportunities may be sacrificed. Thus, maximizing the scientific gains from eruptions requires improved planning and coordinating science activities among governmental organizations and academia before and during volcanic eruptions. One tool to facilitate this coordination is a Scientific Advisory Committee (SAC). In the USA, the Community Network for Volcanic Eruption Response (CONVERSE) has been developing and testing this concept during workshops and scenario-based activities. The December 2020 eruption of Kīlauea volcano, Hawaii, provided an opportunity to test and refine this model in real-time and in a real-world setting. We present here the working model of a SAC developed during this eruption. Successes of the Kīlauea SAC (K-SAC) included broadening the pool of scientists involved in eruption response and developing and codifying procedures that may form the basis of operation for future SACs. Challenges encountered by the K-SAC included a process of review and facilitation of research proposals that was too slow to include outside participation in the early parts of the eruption and a decision process that fell on a small number of individuals at the responding volcano observatory. Possible ways to address these challenges include (1) supporting community-building activities between eruptions that make connections among scientists within and outside formal observatories, (2) identifying key science questions and pre-planning science activities, which would facilitate more rapid implementation across a broader scientific group, and (3) continued dialog among observatory scientists, emergency responders, and non-observatory scientists about the role of SACs. The SAC model holds promise to become an integral part of future efforts, leading in the short and longer term to more effective hazard response and greater scientific discovery and understanding.
A look ahead to the next decade at US volcano observatories
Volcano monitoring, eruption response, and hazard assessment at volcanoes in the United States of America (US) fall under the mandate of five regional volcano observatories covering 161 active volcanoes. Working in a wide range of volcanic and geographic settings, US observatories must learn from and apply new knowledge and techniques to a great variety of scientific and hazard communication problems in volcanology. Over the past decade, experience during volcanic crises, such as the landmark 2018 eruption of Kīlauea, Hawai'i, has combined with investments and advances in research and technology, and the changing needs of partner agencies and the public, to transform the operations, science, and communication programs of US volcano observatories. Scientific and operational lessons from the past decade now guide new research and growing inter-observatory and external communication networks to meet new challenges and improve detection, forecasting, and response to volcanic eruptions in the US and around the world.
Unusually high SO emissions and plume height from Piton de la Fournaise volcano during the April 2020 eruption
Piton de la Fournaise volcano, La Réunion, France, erupted between the 2 and 6 April 2020, one of a series of eruptive phases which occur typically two or three times per year. Here, we use back trajectory analysis of satellite data from the TROPOMI instrument to determine that gas emissions during the June 2020 eruption were of unusually high intensity and altitude, producing 34.9 ± 17.4 kt of SO and plume heights up to 5 km a.s.l. The early stages of the eruption (2-4 April 2020) were characterised by relatively low SO emission rates despite strong low frequency tremor (LFT); the latter phase followed an increase in intensity and explosivity in the early hours of 5 April 2020. This period included lava fountaining, significantly increased SO emission rates, increased high frequency tremor (HFT) and decreased LFT. Using the PlumeTraj back trajectory analysis toolkit, we found the peak SO emission rate was 284 ± 130 kg/s on the 6 April. The plume altitude peaked at ~ 5 km a.s.l. on 5 April, in the hours following a sudden increase in explosivity, producing one of the tallest eruption columns recorded at Piton de la Fournaise. PlumeTraj allowed us to discriminate each day's SO, which otherwise would have led to a mass overestimate due to the plumes remaining visible for more than 24 h. The eruption exhibited a remarkable decoupling and anti-correlation between the intensity of the LFT signal and that of the magma and gas emission rates. LFT intensity peaked during the first phase with low magma and SO emissions, but quickly decreased during the second phase, replaced by unusually strong HFT. We conclude that the observation of strong HFT is associated with higher intensity of eruption, degassing, and greater height of neutral buoyancy of the plume, which may provide an alert to the presence of greater hazards produced by higher intensity eruptive activity. This might be particularly useful when direct visual observation is prevented by meteorological conditions. This eruption shows the importance of combining multiple data sets when monitoring volcanoes. Combining gas and seismic data sets allowed for a much more accurate assessment of the eruption than either could have done alone.
The centenary of IAVCEI 1919-2019 and beyond: origins and evolution of the International Association of Volcanology and Chemistry of the Earth's Interior
IAVCEI originated in 1919 as one of the six inaugural "sections" of the International Union of Geodesy and Geophysics (IUGG). IUGG was formed by the International Research Council, which has now evolved to become the International Science Council (ISC). In 1933 the Section for Volcanology was renamed the International Association of Volcanology (IAV), and in 1967, it became the International Association of Volcanology and Geochemistry of the Earth's Interior (IAVCEI). IAVCEI has been managed by 22 Presidents, 10 Secretaries-General, and their executive committees/bureaus. IAVCEI has always had a focus on facilitating the communication of volcanological research through organising a variety of international conferences, including IAVCEI General Assemblies, Scientific Assemblies, occasional Volcanological Congresses, and Cities on Volcanoes conferences. In addition, IAVCEI established research working groups initially which then became the association's research commissions. The research commissions have also organised their own research workshops. Recently IAVCEI has also developed new groupings of researchers through their Network program, including the Early Career Researcher Network, which focus mostly on facilitating communication. has been the official IAVCEI journal since 1924 and has undergone several facelifts in its cover and format. It has been very well served by its 11 volunteer editors, editorial board, and reviewers in almost 100 years of publication. In addition, IAVCEI was instrumental in instigating an inventory of known volcanoes through its Catalogue of the Volcanoes of the World series, a role now undertaken by the Smithsonian Institution. To acknowledge outstanding achievements in volcanological research, IAVCEI has established 6 awards since 1974. Developing a better understanding of how volcanoes erupt and the impacts of eruptions on society has been an integral responsibility of IAVCEI as the learned international association in volcanology. In the 1990s, IAVCEI initiated the Decade Volcanoes program to encourage research on 16 volcanoes that were deemed to pose significant risks to the communities around them. Some have erupted since then, but eruptions from other volcanoes have also provided significant insights into eruption processes and phenomena. Although IAVCEI's future looks healthy, there are ways of being more proactive in improving services to members, including improving diversity and inclusiveness, greater gender balance for all positions on the IAVCEI Executive Committee, widening the representation of nationalities that serve on the Executive Committee, increasing membership numbers to generate greater income to support scientists in need of support to participate in IAVCEI activities, and significantly lowering the fee for open access publication of research papers in IAVCEI's masthead journal, .
Stakeholder perceptions of managing an emergent tourist destination: the Fagradalsfjall volcanic eruption in Iceland
The 2021 volcanic eruption at Fagradalsfjall, Iceland, provides a case study for examining an active collaboration between stakeholders in the development of an emergent volcanic site into a tourism destination from its inception. Stakeholders for this research include municipal actors and representatives; landowners; commercial tour companies and operators; the Federal Ministry of Tourism and Ministry of Environment and Natural Resources, civil protection, and search and rescue. These stakeholder perceptions of the management process are analyzed within a responsible and sustainable tourism framework by a constant comparative method of interview text. The results bring to light issues deemed important during the site management and destination development process around concepts of authority, responsibility, safety, funding, and access. According to stakeholders, the management of the emergent Fagradalsfjall destination while positively perceived initially has gaps surrounding ongoing sustainable and responsible management that could have impacts on the participation of various stakeholder groups in the destination's ongoing development. This research has implications for other emergent volcanic tourist sites in Iceland and beyond.
Linking gas and particle ejection dynamics to boundary conditions in scaled shock-tube experiments
Predicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth's surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the "spreading angle", has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.
Airfall volume of the 15 January 2022 eruption of Hunga volcano estimated from ocean color changes
On 15 January 2022, Hunga volcano erupted, creating an extensive and high-reaching umbrella cloud over the open ocean, hindering traditional isopach mapping and fallout volume estimation. In MODIS satellite imagery, ocean surface water was discolored around Hunga following the eruption, which we attribute to ash fallout from the umbrella cloud. By relating intensity of ocean discoloration to fall deposit thicknesses in the Kingdom of Tonga, we develop a methodology for estimating airfall volume over the open ocean. Ash thickness measurements from 41 locations are used to fit a linear relationship between ash thickness and ocean reflectance. This produces a minimum airfall volume estimate of km. The whole eruption produced > 6.3 km of uncompacted pyroclastic material on the seafloor and a caldera volume change of 6 km DRE. Our fall estimates are consistent with the interpretation that most of the seafloor deposits were emplaced by gravity currents rather than fall deposits. Our proposed method does not account for the largest grain sizes, so is thus a minimum estimate. However, this new ocean-discoloration method provides an airfall volume estimate consistent with other independent measures of the plume and is thus effective for rapidly estimating fallout volumes in future volcanic eruptions over oceans.