Mechanical and Electronic Approaches to Improve the Sensitivity of Microcantilever Sensors
Advances in the field of Micro Electro Mechanical Systems (MEMS) and their uses now offer unique opportunities in the design of ultrasensitive analytical tools. The analytical community continues to search for cost-effective, reliable, and even portable analytical techniques that can give reliable and fast response results for a variety of chemicals and biomolecules. Microcantilevers (MCLs) have emerged as a unique platform for label-free biosensor or bioassay. Several electronic designs, including piezoresistive, piezoelectric, and capacitive approaches, have been applied to measure the bending or frequency change of the MCLs upon exposure to chemicals. This review summarizes mechanical, fabrication, and electronics approaches to increase the sensitivity of microcantilever (MCL) sensors.
Tissue cell differentiation and multicellular evolution via cytoskeletal stiffening in mechanically stressed microenvironments
Evolution of eukaryotes from simple cells to complex multicellular organisms remains a mystery. Our postulate is that cytoskeletal stiffening is a necessary condition for evolution of complex multicellular organisms from early simple eukaryotes. Recent findings show that embryonic stem cells are as soft as primitive eukaryotes-amoebae and that differentiated tissue cells can be two orders of magnitude stiffer than embryonic stem cells. Soft embryonic stem cells become stiff as they differentiate into tissue cells of the complex multicellular organisms to match their microenvironment stiffness. We perhaps see in differentiation of embryonic stem cells (derived from inner cell mass cells) the echo of those early evolutionary events. Early soft unicellular organisms might have evolved to stiffen their cytoskeleton to protect their structural integrity from external mechanical stresses while being able to maintain form, to change shape, and to move.
Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Effects of electrical stimulation on skin surface
Skin is the largest organ in the body, and directly contact with the external environment. Articles on the role of micro-current and skin have emerged in recent years. The function of micro-current is various, including introducing various drugs into the skin locally or throughout the body, stimulating skin wounds healing through various currents, suppressing pain caused by various diseases, and promoting blood circulation for postoperative muscle rehabilitation, etc. This article reviews these efforts. Compared with various physical and chemical medical therapies, micro-current stimulation provides a relatively safe, non-invasive therapy with few side effects, giving modern medicine a more suitable treatment option. At the same time, the cost of the electrical stimulation generating device is relatively low, which makes it have wider space to and more clinical application value. The current micro-current stimulation technology has become more and more mature, but there are still many problems in its research. The design of the experiment and the selection of the current parameters not standardized and rigorous. Now, clear regulations are needed to regulate this field. Micro-current skin therapy has become a robust, reliable, and well-structured system.
Coordinated motion of molecular motors on DNA chains with branch topology
To understand the macroscopic mechanical behaviors of responsive DNA hydrogels integrated with DNA motors, we constructed a state map for the translocation process of a single FtsK on a single DNA chain at the molecular level and then investigated the movement of single or multiple FtsK motors on DNA chains with varied branch topologies. Our studies indicate that multiple FtsK motors can have coordinated motion, which is mainly due to the force-responsive behavior of individual FtsK motors. We further suggest the potential application of motors of FtsK, together with DNA chains of specific branch topology, to serve as strain sensors in hydrogels.
Comparison between fully resolved and time-averaged simulations of particle cloud dispersion produced by a violent expiratory event
In this work we compare the DNS results (Fabregat et al. 2021, Fabregat et al. 2021) for a mild cough already reported in the literarure with those obtained with a compressible URANS equations with a turbulence model. In both cases, the dispersed phase has been modelled as spherical Lagrangian particles using the one-way coupling assumption. Overall, the URANS model is capable of reproducing the observed tendency of light particles under 64 µm in diameter to rise due to the action of the drag exerted by the buoyant puff generated by the cough. Both DNS and URANS found that particles above 64 µm will tend to describe parabolic trajectories under the action of gravitational forces. Grid independence analysis allows to qualify the impact of increasing mesh resolution on the particle cloud statistics as flow evolves. Results suggest that the model overpredicts the horizontal displacement of the particles smaller than 64 µm while the opposite occurs for the particles larger than 64 µm.
Dispersed multiphase flows: advances in measuring, simulation and modeling
On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics
Smoothed particle hydrodynamics (SPH), as one of the earliest meshfree methods, has broad prospects in modeling a wide range of problems in engineering and science, including extremely large deformation problems such as explosion and high velocity impact. This paper aims to provide a comprehensive overview on the recent advances of SPH method in the fields of fluid, solid, and biomechanics. First, the theory of SPH is described, and improved algorithms of SPH with high accuracy are summarized, such as the finite particle method (FPM). Techniques used in SPH method for simulating fluid, solid and biomechanics problems are discussed. The -SPH method and Godunov SPH (GSPH) based on the Riemann model are described for handling instability issues in fluid dynamics. Next, the interface contact algorithm for fluid-structure interaction is also discussed. The common algorithms for improving the tensile instability and the framework of total Lagrangian SPH are examined for challenging tasks in solid mechanics. In terms of biomechanics, the governing equations and the coupling forces based on SPH method are exemplified. Then, various typical engineering applications and recent advances are elaborated. The application of fluid mainly depicts the interaction between fluid and rigid body as well as elastomer, while some complicated fluid-structure interaction ocean engineering problems are also presented. In the aspect of solid dynamics, galaxy, geotechnical mechanics, explosion and impact, and additive manufacturing are summarized. Furthermore, the recent advancements of SPH method in biomechanics, such as hemodynamically and gut health, are discussed in general. In addition, to overcome the limitations of computational efficiency and computational scale, the multiscale adaptive resolution, the parallel algorithm and the automated mesh generation are addressed. The development of SPH software in China and abroad is also summarized. Finally, the challenging task of SPH method in the future is summarized. In future research work, the establishment of multi-scale coupled SPH model and deep learning technology in solid and biodynamics will be the focus of expanding the engineering applications of SPH methods.