Horticulturae

Transcriptome Analysis Reveals Potential Mechanisms for Ethylene-Inducible Pedicel-Fruit Abscission Zone Activation in Non-Climacteric Sweet Cherry ( L.)
Hewitt S, Kilian B, Koepke T, Abarca J, Whiting M and Dhingra A
The harvesting of sweet cherry ( L.) fruit is a labor-intensive process. The mechanical harvesting of sweet cherry fruit is feasible; however, it is dependent on the formation of an abscission zone at the fruit-pedicel junction. The natural propensity for pedicel-fruit abscission zone (PFAZ) activation varies by cultivar, and the general molecular basis for PFAZ activation is not well characterized. In this study, ethylene-inducible change in pedicel fruit retention force (PFRF) was recorded in a developmental time-course with a concomitant analysis of the PFAZ transcriptome from three sweet cherry cultivars. In 'Skeena', mean PFRF for both control and treatment fruit dropped below the 0.40 kg-force (3.92 N) threshold for mechanical harvesting, indicating the activation of a discrete PFAZ. In 'Bing', mean PFRF for both control and treatment groups decreased over time. However, a mean PFRF conducive to mechanical harvesting was achieved only in the ethylene-treated fruit. While in 'Chelan' the mean PFRF of the control and treatment groups did not meet the threshold required for efficient mechanical harvesting. Transcriptome analysis of the PFAZ region followed by the functional annotation, differential expression analysis, and gene ontology (GO) enrichment analyses of the data facilitated the identification of phytohormone-responsive and abscission-related transcripts, as well as processes that exhibited differential expression and enrichment in a cultivar-dependent manner over the developmental time-course. Additionally, read alignment-based variant calling revealed several short variants in differentially expressed genes, associated with enriched gene ontologies and associated metabolic processes, lending potential insight into the genetic basis for different abscission responses between the cultivars. These results provide genetic targets for the induction or inhibition of PFAZ activation, depending on the desire to harvest the fruit with or without the stem attached. Understanding the genetic mechanisms underlying the development of the PFAZ will inform future cultivar development while laying a foundation for mechanized sweet cherry harvest.
Total Coliform and Generic Levels, and Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data
Weller DL, Saylor L and Turkon P
Although many studies have investigated foodborne pathogen prevalence in conventional produce production environments, relatively few have investigated prevalence in aquaponics and hydroponics systems. This study sought to address this knowledge gap by enumerating total coliform and generic levels, and testing for presence in circulating water samples collected from five hydroponic systems and three aquaponic systems (No. of samples = 79). While total coliform levels ranged between 6.3 Most Probable Number (MPN)/100-mL and the upper limit of detection (2496 MPN/100-mL), only three samples had detectable levels of and no samples had detectable levels of . Of the three positive samples, two samples had just one MPN of /100-mL while the third had 53.9 MPN of /100-mL. While the sample size reported here was small and site selection was not randomized, this study adds key data on the microbial quality of aquaponics and hydroponics systems to the literature. Moreover, these data suggest that contamination in these systems occurs at relatively low-levels, and that future studies are needed to more fully explore when and how microbial contamination of aquaponics and hydroponic systems is likely to occur.