Inorganics

Exploring the Use of Intracellular Chelation and Non-Iron Metals to Program Ferroptosis for Anticancer Application
Claudio-Ares O, Luciano-Rodríguez J, Del Valle-González YL, Schiavone-Chamorro SL, Pastor AJ, Rivera-Reyes JO, Metzler CL, Domínguez-Orona LM, Vargas-Pérez BL, Skouta R and Tinoco AD
The discovery of regulated cell death (RCD) revolutionized chemotherapy. With caspase-dependent apoptosis initially being thought to be the only form of RCD, many drug development strategies aimed to synthesize compounds that turn on this kind of cell death. While yielding a variety of drugs, this approach is limited, given the acquired resistance of cancers to these drugs and the lack of specificity of the drugs for targeting cancer cells alone. The discovery of non-apoptotic forms of RCD is leading to new avenues for drug design. Evidence shows that ferroptosis, a relatively recently discovered iron-based cell death pathway, has therapeutic potential for anticancer application. Recent studies point to the interrelationship between iron and other essential metals, copper and zinc, and the disturbance of their respective homeostasis as critical to the onset of ferroptosis. Other studies reveal that several coordination complexes of non-iron metals have the capacity to induce ferroptosis. This collective knowledge will be assessed to determine how chelation approaches and coordination chemistry can be engineered to program ferroptosis in chemotherapy.
Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples
Blade G, Wessel AJ, Terpstra K and Mirica LM
Two new ligands were synthesized with the goal of copper stabilization, N,N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (N4) and N-(methyl),N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (N4), by selective functionalization of N4 and N4. These two ligands, when reacted with various copper salts, generated both Cu(II) and Cu(I) complexes. These ligands and Cu complexes were characterized by various methods, such as NMR, UV-Vis, MS, and EA. Each compound was also examined electrochemically, and each revealed reversible Cu(II)/Cu(I) redox couples. Additionally, stability constants were determined via spectrophotometric titrations, and radiolabeling and cytotoxicity experiments were performed to assess the chelators relevance to their potential use in vivo as Cu PET imaging agents.
Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends
Orta-Rivera AM, Meléndez-Contés Y, Medina-Berríos N, Gómez-Cardona AM, Ramos-Rodríguez A, Cruz-Santiago C, González-Dumeng C, López J, Escribano J, Rivera-Otero JJ, Díaz-Rivera J, Díaz-Vélez SC, Feliciano-Delgado Z and Tinoco AD
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body's innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs.
Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug
Delinois LJ, De León-Vélez O, Vázquez-Medina A, Vélez-Cabrera A, Marrero-Sánchez A, Nieves-Escobar C, Alfonso-Cano D, Caraballo-Rodríguez D, Rodriguez-Ortiz J, Acosta-Mercado J, Benjamín-Rivera JA, González-González K, Fernández-Adorno K, Santiago-Pagán L, Delgado-Vergara R, Torres-Ávila X, Maser-Figueroa A, Grajales-Avilés G, Miranda Méndez GI, Santiago-Pagán J, Nieves-Santiago M, Álvarez-Carrillo V, Griebenow K and Tinoco AD
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity
Benjamín-Rivera JA, Cardona-Rivera AE, Vázquez-Maldonado ÁL, Dones-Lassalle CY, Pabón-Colon HL, Rodríguez-Rivera HM, Rodríguez I, González-Espiet JC, Pazol J, Pérez-Ríos JD, Catala-Torres JF, Carrasquillo Rivera M, De Jesus-Soto MG, Cordero-Virella NA, Cruz-Maldonado PM, González-Pagan P, Hernández-Ríos R, Gaur K, Loza-Rosas SA and Tinoco AD
Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.
Metal-Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity
Yang J, Enemark JH and Kirk ML
Here we highlight past work on metal-dithiolene interactions and how the unique electronic structure of the metal-dithiolene unit contributes to both the oxidative and reductive half reactions in pyranopterin molybdenum and tungsten enzymes. The metallodithiolene electronic structures detailed here were interrogated using multiple ground and excited state spectroscopic probes on the enzymes and their small molecule analogs. The spectroscopic results have been interpreted in the context of bonding and spectroscopic calculations, and the pseudo-Jahn-Teller effect. The dithiolene is a unique ligand with respect to its redox active nature, electronic synergy with the pyranopterin component of the molybdenum cofactor, and the ability to undergo chelate ring distortions that control covalency, reduction potential, and reactivity in pyranopterin molybdenum and tungsten enzymes.
Evaluating Ligand Modifications of the Titanocene and Auranofin Moieties for the Development of More Potent Anticancer Drugs
Fernandez-Vega L, Ruiz Silva VA, Domínguez-González TM, Claudio-Betancourt S, Toro-Maldonado RE, Capre Maso LC, Ortiz KS, Pérez-Verdejo JA, González JR, Rosado-Fraticelli GT, Meléndez FP, Betancourt Santiago FM, Rivera-Rivera DA, Navarro CM, Bruno Chardón AC, Vera AO and Tinoco AD
Over time platinum-based anticancer drugs have dominated the market, but their side effects significantly impact the quality of life of patients. Alternative treatments are being developed all over the world. The titanocene and auranofin families of compounds, discovered through an empirical search for other metal-based therapeutics, hold tremendous promise to improve the outcomes of cancer treatment. Herein we present a historical perspective of these compounds and review current efforts focused on the evolution of their ligands to improve their physiological solution stability, cancer selectivity, and antiproliferative performance, guided by a clear understanding of the coordination chemistry and aqueous speciation of the metal ions, of the cytotoxic mechanism of action of the compounds, and the external factors that limit their therapeutic potential. Newer members of these families of compounds and their combination in novel bimetallic complexes are the result of years of scientific research. We believe that this review can have a positive impact in the development and understanding of the metal-based drugs of gold, titanium, and beyond.
Human acireductone dioxygenase (HsARD), cancer and human health: Black hat, white hat or gray?
Liu X and Pochapsky TC
Multiple factors involving the methionine salvage pathway (MSP) and polyamine biosynthesis have been found to be involved in cancer cell proliferation, migration, invasion and metastasis. This review summarizes the relationships of the MSP enzyme acireductone dioxygenase (ARD), the gene encoding ARD and other gene products (ADI1GP) with carcinomas and carcinogenesis. ARD exhibits structural and functional differences depending upon the metal bound in the active site. In the penultimate step of the MSP, the Fe bound form of ARD catalyzes the on-pathway oxidation of acireductone leading to methionine, whereas Ni bound ARD catalyzes an off-pathway reaction producing methylthiopropionate and carbon monoxide, a biological signaling molecule and anti-apoptotic. The relationship between ADI1GP, MSP and polyamine synthesis are discussed, along with possible role(s) of metal in modulating the cellular behavior of ADI1GP and its interactions with other cellular components.
Nickel Metalloregulators and Chaperones
Higgins K
Nickel is essential for the survival of many pathogenic bacteria. and require nickel for [NiFe]-hydrogenases. also requires nickel for urease. At high concentrations nickel can be toxic to the cell, therefore, nickel concentrations are tightly regulated. Metalloregulators help to maintain nickel concentration in the cell by regulating the expression of the genes associated with nickel import and export. Nickel import into the cell, delivery of nickel to target proteins, and export of nickel from the cell is a very intricate and well-choreographed process. The delivery of nickel to [NiFe]-hydrogenase and urease is complex and involves several chaperones and accessory proteins. A combination of biochemical, crystallographic, and spectroscopic techniques has been utilized to study the structures of these proteins, as well as protein-protein interactions resulting in an expansion of our knowledge regarding how these proteins sense and bind nickel. In this review, recent advances in the field will be discussed, focusing on the metal site structures of nickel bound to metalloregulators and chaperones.
pH Dependent Reversible Formation of a Binuclear Ni Metal-Center Within a Peptide Scaffold
Keegan BC, Ocampo D and Shearer J
A disulfide-bridged peptide containing two Ni binding sites based on the nickel superoxide dismutase protein, {Ni(SOD)}, has been prepared. At physiological pH (7.4) it was found that the metal sites are mononuclear with a square planar NOS coordination environment with the two sulfur-based ligands derived from cysteinate residues, the nitrogen ligand derived from the amide backbone and a water ligand. Furthermore, S K-edge X-ray absorption spectroscopy indicated that the two cysteinate sulfur atoms ligated to nickel are each protonated. Elevation of the pH to 9.6 results in the deprotonation of the cysteinate sulfur atoms, and yields a binuclear, cysteinate bridged Ni center with each nickel contained in a distorted square planar geometry. At both pH = 7.4 and 9.6 the nickel sites are moderately air sensitive, yielding intractable oxidation products. However, at pH = 9.6 {Ni(SOD)} reacts with O at an ~3.5-fold faster rate than at pH = 7.4. Electronic structure calculations indicate the reduced reactivity at pH = 7.4 is a result of a reduction in S(3p) character and deactivation of the nucleophilic frontier molecular orbitals upon cysteinate sulfur protonation.
Reactive Heterobimetallic Complex Combining Divalent Ytterbium and Dimethyl Nickel Fragments
Wang D, Moutet J, Tricoire M, Cordier M and Nocton G
This article presented the synthesis and characterization of original heterobimetallic species combining a divalent lanthanide fragment and a divalent nickel center bridged by the bipyrimidine ligand, a redox-active ligand. X-ray crystal structures were obtained for the Ni monomer (bipym)NiMe, , as well as the heterobimetallic dimer compounds, Cp*Yb(bipym)NiMe, , along with H solution NMR, solid-state magnetic data, and DFT calculations only for . The reactivity with CO was investigated on both compounds and the stoichiometric acetone formation is discussed based on kinetic and mechanistic studies. The key role of the lanthanide fragment was demonstrated by the relatively slow CO migratory insertion step, which indicated the stability of the intermediate.
The Importance of Solvent Effects on the Mechanism of the Pfeiffer Effect
Lunkley JL, Nguyen NM, Tuminaro KM, Margittai D and Muller G
The Pfeiffer effect is observed when an optically active compound such as an amino acid is introduced to a solution containing a labile racemic metal complex, and an equilibrium shift is obtained. The "perturbation" results in an excess of one enantiomer over the other. The shift is a result of a preferential outer sphere interaction between the introduced chiral species and one enantiomeric form (Λ or Δ) of a labile metal complex. Speculations regarding the mechanism of the Pfeiffer effect have attributed observations to a singular factor such as pH, solvent polarity, or numerous other intermolecular interactions. Through the use of the lanthanide(III) complexes [Tb(DPA)] and [Eu(DPA)] (where DPA = 2,6-pyridinedicarboxylate) and the amino acids l-serine and l-proline; it is becoming clear that the mechanism is not so simply described as per the preliminary findings that are discussed in this study. It appears that the true mechanism is far more complicated than the attribute just a singular factor. This work attempts to shine light on the fact that understanding the behavior of the solvent environment may hypothetically be the key to offering a more detailed description of the mechanism.
Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR and Tinoco AD
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
High-Pressure Synthesis of Non-Stoichiometric Li WO (0.5 ≤ ≤ 1.0) with LiNbO Structure
Ishida K, Ikeuchi Y, Tassel C, Takatsu H, Brown CM and Kageyama H
Compounds with the LiNbO-type structure are important for a variety of applications, such as piezoelectric sensors, while recent attention has been paid to magnetic and electronic properties. However, all the materials reported are stoichiometric. This work reports on the high-pressure synthesis of lithium tungsten bronze Li WO with the LiNbO-type structure, with a substantial non-stoichiometry (0.5 ≤ ≤ 1). LiWO exhibit a metallic conductivity. This phase is related to an ambient-pressure perovskite phase (0 ≤ ≤ 0.5) by the octahedral tilting switching between aaa and aaa.