High expression of SLC34A2 contributes to chemoresistance of non-small cell lung cancer against gefitinib: The critical role of miR-124-3p
Gefitinib is a therapeutic agent used to treat lung carcinoma, including non-small cell lung cancer (NSCLC). However, mechanisms underlying NSCLC cell resistance to gefitinib remain largely uncharacterized. In this study, we explored the association between the miR-124-3p/SLC34A2 axis and gefitinib resistance using a series of in vivo and in vitro assays. Data indicated that miR-124-3p is downregulated, while SLC34A2 is upregulated, in gefitinib-resistant NSCLC cells. Overexpression of miR-124-3p reduced NSCLC cell resistance to gefitinib by suppressing cell viability, inducing apoptosis, and decreasing N-cadherin expression. Conversely, inhibiting miR-124-3p in NSCLC cells led to increased cell viability and reduced apoptosis. Overexpression of SLC34A2 in NSCLC cells further heightened gefitinib resistance. In a xenograft mouse model, SLC34A2 overexpression promoted solid tumor growth and metastasis, while miR-124-3p overexpression inhibited these effects. Our results highlight that the interaction between miR-124-3p and SLC34A2 plays an indispensable role in determining gefitinib resistance in NSCLC cells.
The mutagenic properties of formaldehyde and acetaldehyde: Reflections on half a century of progress
Formaldehyde and acetaldehyde are reactive, small compounds that humans are exposed to routinely, variously from endogenous and exogenous sources. Both small aldehydes are classified as human carcinogens. Investigation of the DNA damaging properties of these two compounds began some 50 years ago. In this review, we summarize progress in this field since its inception over half a century ago, distilling insights gained by the collective efforts of many research groups while highlighting areas for future directions. Over the decades, general consensus about aspects of the mutagenicity of formaldehyde and acetaldehyde has been reached. But other characteristics of formaldehyde and acetaldehyde remain incompletely understood and require additional investigation. These include crucial details about the mutational signature(s) induced and possible mechanistic role(s) during carcinogenesis.
ATM and ATR gene editing mediated by CRISPR/Cas9 in Chinese Hamster cells
Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.
Saikosaponin-d mediates FOXG1 to reverse docetaxel resistance in prostate cancer through oxidative phosphorylation
Prostate cancer (PCa), a prevalent malignancy worldwide, is frequently identified in advanced stages due to the absence of distinctive early symptoms, thereby culminating in the development of chemotherapy-induced drug resistance. Exploring novel resistance mechanisms and identifying new therapeutic agents can facilitate the advancement of more efficacious strategies for PCa treatment.
The RAD51 S181P mutation shortens lifespan of female mice
RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in RAD51 causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males. Histological analysis found that most mice in this study died from lymphoma, independent of genotype and sex. We propose that a potential cause for shortened lifespan in SP/SP females is due to the RF defect.
Therapeutic potential of curcumin in autophagy modulation: Insights into the role of transcription factor EB
Transcription factor EB (TFEB) is a basic Helix-Loop-Helix/Leucine Zipper (bHLHZip) class of DNA-binding proteins, which can control the expression of genes included in the autophagy-lysosomal pathway. TFEB regulates the autophagic flux by enhancing lysosome biogenesis, forming autophagosomes, and fusion with lysosomes, thereby facilitating cellular clearance of pathogenic protein structures. Curcumin is a natural polyphenolic molecule with pharmacological properties that make it a potential therapeutic candidate for a wide range of diseases. One of the important curcumin mechanisms of action includes modulation of autophagy through affecting various signaling components such as TFEB. This review discusses in vitro and in vivo evidence on the effects of curcumin on autophagy process via modulating TFEB activity in different disorders.
AQP5 promotes epithelial-mesenchymal transition and tumor growth through activating the Wnt/β-catenin pathway in triple-negative breast cancer
Emerging data identifies aquaporin 5 (AQP5) as a vital player in many kinds of cancers. Over expression of AQP5 was associated with increased metastasis and poor prognosis, suggesting that AQP5 may facilitate cancer cell proliferation and migration. Our previous studies also showed that AQP3 and AQP5 were highly expressed in triple-negative breast cancer (TNBC) and the expression of AQP3 and AQP5 in TNBC tissue was positive correlated with advanced clinical stage.
MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Understanding the nucleotide composition and patterns of codon usage in the expression of human oral cancer genes
Oral squamous cell carcinoma (OSCC) is primarily known as oral cancer (OC) that mostly occurs in mouth, lips and tongue. Mutations in some of the genes cause OC and some genes are risk factors for progression of OC. In this study, we analyzed the compositional features and pattern of codon usage in genes involved in OC using computational method as no work was reported yet. Compositional features suggested that the overall GC content was higher i.e. genes were GC rich. Effective number of codons (ENC) values ranged from 34.6 to 55.9 with a mean value of 49.03±4.22 representing low codon usage bias (CUB). Correspondence analysis (COA) suggested that the codon usage pattern was different in different genes. In genes associated with OC, highly significant correlation was observed between GC12 and GC3 (r=0.454, p<0.01) suggesting that directional mutation affected all the three codon positions. This is the first report on pattern of codon usage pattern on genes involved in OC, which not only alludes a new perspective for elucidating the mechanisms of biased usage of synonymous codons but also provide valuable clues for molecular genetic engineering.
HOXA1 promotes epithelial-mesenchymal transition and malignant characteristics of laryngeal squamous cell carcinoma
Despite considerable advancements in the diagnosis and treatment of LSCC, there has been no significant improvement in survival rate. Consequently, identifying molecular targets for this cancer is of paramount importance. HOXA1, a constituent of the homeobox transcription factor cluster, plays a role in the development of various types of cancer. Nevertheless, the specific function and mechanism of HOXA1 in LSCC remains unclear. This study aimed to clarify the impact of HOXA1 on the advancement of LSCC and uncover its underlying mechanism. Our findings indicate that HOXA1 exhibits a significantly elevated expression level in LSCC. Suppression of HOXA1 inhibited the proliferation of LSCC cells. Furthermore, the ablation of HOXA1 triggered the apoptosis of LSCC cells and inhibited EMT. Functionally, HOXA1 has a role in initiating the activation of the PI3K/AKT/mTOR pathway in LSCC cells. In summary, HOXA1 significantly contributes to the EMT of LSCC cells via the PI3K/AKT/mTOR signaling pathway, thereby facilitating the proliferation and motility of LSCC cells. Consequently, HOXA1 presents itself as a viable therapeutic target for LSCC interventions.
Molecular dynamics of DNA repair and carcinogen interaction: Implications for cancer initiation, progression, and therapeutic strategies
The integrity of the genetic material in human cells is continuously challenged by environmental agents and endogenous stresses. Among these, environmental carcinogens are pivotal in initiating complex DNA lesions that can lead to malignant transformations if not properly repaired. This review synthesizes current knowledge on the molecular dynamics of DNA repair mechanisms and their interplay with various environmental carcinogens, providing a comprehensive overview of how these interactions contribute to cancer initiation and progression. We examine key DNA repair pathways including base excision repair, nucleotide excision repair, and double-strand break repair and their regulatory networks, highlighting how defects in these pathways can exacerbate carcinogen-induced damage. Further, we discuss how understanding these molecular interactions offers novel insights into potential therapeutic strategies. This includes leveraging synthetic lethality concepts and designing targeted therapies that exploit specific DNA repair vulnerabilities in cancer cells. By integrating recent advances in molecular biology, genetics, and oncology, this review aims to illuminate the complex landscape of DNA repair and carcinogen-induced carcinogenesis, setting the stage for future research and therapeutic innovations.
Agrimonolide inhibits glycolysis in ovarian cancer cells by regulating HIF1A
Ovarian cancer is one of the most common tumors affecting females, significantly disrupting their quality of life. Agrimonolide, an extract derived from Agrimony (Agrimonia pilosa Ledeb.), has been shown to exert various regulatory effects on several diseases. Notably, recent studies indicate that Agrimonolide may attenuate the progression of ovarian cancer. However, the detailed regulatory mechanisms of Agrimonolide in this context require further investigation.
Knockdown of SDCBP induces autophagy to promote cardiomyocyte growth and angiogenesis in hypoxia/reoxygenation model
Angina, myocardial infarction, and even mortality can result from myocardial ischemia (MI). Angiogenesis facilitates tissue repair, lessens cell damage, and ensures that ischemic tissues receive blood and oxygen. This study investigated the possible mechanism of syndecan-binding protein (SDCBP) on autophagy and assessed its impact on myocardial ischemia.
PM induces lung inflammation through ANGPTL4
Fine particulate matter (PM) is a common major air pollutant associated with decreased lung function, induced allergic airway inflammation closely correlated with chronic lung diseases. Angiopoietin-like protein 4 (ANGPTL4) is a cytokine with multiple functions, participating in processes such as inflammation, angiogenesis, and metastasis. Curcumin is an active compound found in turmeric plants and possesses various pharmacological effects, including antioxidant, anti-inflammatory, anticancer, and immunomodulatory properties. The aim of this study was twofold: firstly, to investigate the involvement of ANGPTL4 in lung inflammation and carcinogenesis under PM exposure, and secondly, to explore the impact of curcumin on ANGPTL4 expression and its potential in lung cancer chemoprevention. We used protein array to detect several proinflammatory cytokines and then used qPCR to confirm by increasing the concentration of PM to enhance the expressions of CXCL1, CXCL5; IL-1α, IL-1β, MIP-3α and inflammation- or fibrosis-associated proteins. Curcumin inhibits PMinduced ANGPTL4 and the IκB-α (inhibitor of NFκB)-dependent inflammatory pathway. Silencing ANGPTL4 by shRNA restore IκB-α and MIP-3α expression. In conclusion, the increased expression of ANGPTL4 after treatment with PM in lung cells may be one of the mechanisms by which PM exposure contributes to lung inflammation progression. Our results provide evidence that curcumin in anti-inflammation therapeutics could serve as a beneficial chemopreventive agent.
miR-129-2-3p binds SEMA4C to regulate HCC development and inhibit the EMT
Among primary liver cancers, HCC is the most prevalent. Small noncoding RNAs called miRNAs control the expression of downstream target genes to take part in a variety of physiological and pathological processes, including those related to cancer.
Transcription factor NFYA inhibits ferroptosis in lung adenocarcinoma cells by regulating PEBP1
Ferroptosis is an iron-dependent programmed cell death mediated by lipid peroxidation. The purpose was to explore the molecular mechanism by which phosphatidylethanolamine-binding protein 1 (PEBP1) regulates ferroptosis in lung adenocarcinoma (LUAD), hoping to identify novel therapeutic targets for LUAD.
Apiole, an important constituent of parsley, is a mixed-type inhibitor of the CYP1A subfamily
Apiole (1-allyl-2,5-dimethoxy-3,4-methylenedioxybenzene) and parsley leaves ethanolic extract containing it inhibit the rat liver microsomal ethoxy- and methoxyresorufin-O-deacetylase activities associated with cytochrome P450 (CYP) 1A1 and 1A2, respectively. Cytochrome P4501A subfamily metabolizes environmental mutagens and several drugs, leading to the formation of mutagenic metabolites. Docking analysis showed that residue Phe123 within the active site of the CYP1A1 enzyme is bound to apiole through a π/π stacking of its benzene ring. In the case of 1A2, its Phe226 interacts with the dioxolane ring of apiole. Furthermore, apiole behaves as a mixed-type inhibitor of bacterial human recombinant CYP1A1. To explore one of the possible biological implications of this inhibitory effect, we tested the capacity of apiole and the parsley ethanolic extract to interfere with the mutagenicity of the promutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) metabolized by CYP1A subfamily. As expected, both apiole and the plant extract reduced the number of revertant colonies of Salmonella typhimurium TA98 Ames strain after exposure to MeIQx, reaching a 78 % and 100 % reduction, respectively. Neither apiol nor parsley extract were mutagenic to the TA98 strain. We speculate that consuming apiole, a constituent of edible herbs, in conjunction with the utilization of pharmaceuticals metabolized by the CYP1A subfamily, may result in herb-drug interactions. Furthermore, the consumption of apiole by individuals who regularly ingest fresh vegetables may contribute to the low incidence of cancer observed in those who adhere to such a dietary regimen.
MicroRNA-138 promotes the progression of multiple myeloma through targeting paired PAX5
Multiple myeloma cancer stem cells (MMSC) have been considered as the leading cause of multiple myeloma (MM) drug resistance and eventual relapse, microRNAs (miRNAs) collectively participate in the progression of MM. However, the pathogenesis of miR-138 in MMSC is still not fully understood.
CircRNA ATF6 suppresses bladder cancer cell proliferation and migration via miR-146a-5p/FLNA axis
Bladder cancer (BCa) is the most common malignancy with increasing morbidity and mortality. Circular RNA (circRNA) ATF6 level was downregulated in BCa after GSE92675 CircRNA microarray dataset was analyzed using GEO2R. However, its function and mechanism in BCa remain largely unknown.
ALDH2 mutations and defense against genotoxic aldehydes in cancer and inherited bone marrow failure syndromes
Reactive aldehydes, for instance, formaldehyde and acetaldehyde, are important endogenous or environmental mutagens by virtue of their abilities to produce a DNA lesion called interstrand crosslink (ICL). Aldehyde-metabolizing enzymes such as aldehyde dehydrogenases (ALDHs) and the Fanconi anemia (FA) pathway constitute the main defense lines against aldehyde-induced genotoxicity. Biallelic mutations of genes in any one of the FA complementation groups can impair the ICL repair mechanism and cause FA, a heterogeneous disorder manifested by bone marrow failure (BMF), congenital abnormality and a strong predisposition to cancer. The defective ALDH2 polymorphism rs671 (ALDH2*2) is a known risk and prognostic factor for alcohol drinking-associated cancers. Recent studies suggest that it also promotes BMF and cancer development in FA, and its combination with alcohol dehydrogenase 5 (ADH5) mutations causes aldehyde degradation deficiency syndrome (ADDS), also known by its symptoms as aplastic anemia, mental retardation, and dwarfism syndrome. ALDH2*2 and another pathogenic variant in the alcohol-metabolizing pathway, ADH1B1*1, is prevalent among East Asians. Also, other ALDH2 genotypes with disease-modifying potentials have lately been identified in different populations. Therefore, it would be appropriate to summarize current knowledge of genotoxic aldehydes and defense mechanisms against them to shed new light on the pathogenic effects of ALDH2 variants together with other genetic and environmental modifiers on cancer and inherited BMF syndromes. Lastly, we also presented potential treatment strategies for FA, ADDS and cancer based on the manipulation of aldehyde-induced genotoxicity.
NTSR1 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma through the Wnt/β-catenin pathway
Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms.