European Journal of Remote Sensing

Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling
Ranghetti M, Boschetti M, Ranghetti L, Tagliabue G, Panigada C, Gianinetto M, Verrelst J and Candiani G
The spaceborne imaging spectroscopy mission (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new opportunities in many scientific domains, including precision farming and sustainable agriculture. This new Earth Observation (EO) data stream requires new-generation approaches for the estimation of important biophysical crop variables (BVs). In this framework, this study evaluated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were simulated from two images acquired by the airborne sensor HyPlant, during a campaign performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best performing ML algorithms, were used to define two relations with plant nitrogen uptake (PNU). CNC proved to be slightly more correlated to PNU than CCC ( = 0.82 and = 0.80, respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. The results showed that the estimated PNU values are within the expected ranges, and the temporal trends are compatible with plant phenology stages.
Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases
Tiede D, Baraldi A, Sudmanns M, Belgiu M and Lang S
Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model.
Urban green valuation integrating biophysical and qualitative aspects
Lang S
Urban green mapping has become an operational task in city planning, urban land management, and quality of life assessments. As a multi-dimensional, integrative concept, urban green comprising several ecological, socio-economic, and policy-related aspects. In this paper, the author advances the representation of urban green by deriving scale-adapted, policy-relevant units. These so-called geons represent areas of uniform green valuation under certain size and homogeneity constraints in a spatially explicit representation. The study accompanies a regular monitoring scheme carried out by the urban municipality of the city of Salzburg, Austria, using optical satellite data. It was conducted in two stages, namely SBG_QB (10.2 km², QuickBird data from 2005) and SBG_WV (140 km², WorldView-2 data from 2010), within the functional urban area of Salzburg. The geon delineation was validated by several quantitative measures and spatial analysis techniques, as well as ground documentation, including panorama photographs and visual interpretation. The spatial association pattern was assessed by calculating Global Moran's I with incremental search distances. The final geonscape, consisting of 1083 units with an average size of 13.5 ha, was analyzed by spatial metrics. Finally, categories were derived for different types of functional geons. Future research paths and improvements to the described strategy are outlined.
Urban vegetation extraction from VHR (tri-)stereo imagery - a comparative study in two central European cities
Kothencz G, Kulessa K, Anyyeva A and Lang S
The present study proposes a workflow to extract vegetation height for urban areas from Pléiades stereo and tri-stereo satellite imagery. The workflow was applied on a stereo image pair for Szeged, Hungary and on tri-stereo imagery for Salzburg, Austria. Digital surface models (DSMs) of the study areas were computed using the semi-global matching algorithm. Normalised digital surface models (nDSMs) were then generated. Objects of vegetation and non-vegetation were delineated based on the spectral information of the multispectral images by applying multi-resolution segmentation and support vector machine classifier. Mean object height values were then computed from the overlaid pixels of the nDSMs and assigned to the objects. Finally, the delineated vegetation was classified into six vegetation height classes based on their assigned height values by using hierarchical classification. The vegetation discrimination resulted in very high accuracy, while the vegetation height extraction was moderately accurate. The results of the vegetation height extraction provided a vertical stratification of the vegetation in the two study areas which is readily applicable for decision support purposes. The elaborated workflow will contribute to a green monitoring and valuation strategy and provide input data for an urban green accessibility study.
Scale matters: a survey of the concepts of scale used in spatial disciplines
Dabiri Z and Blaschke T
Scale is a critical factor when studying patterns and the processes that cause them. A variety of approaches have been used to define the concept of scale but confusion and ambiguities remain regarding scale types and their definitions. The objectives of this study were therefore (1) to review existing types and definitions of scale, and (2) to systematically investigate the ambiguities in scale definitions and to determine the applicability of the various scale types and definitions. Through a comprehensive literature review, we identified seven types of scales and designed a survey for the seven definitions of scale and interviewed 150 scientists. The results show that the more cartography related types of scale are relatively well known while the more abstract dimensions are less known and are most ambiguous. Based on graphical examples, participants were asked which spatial scales are most relevant for their work. Surprisingly, composite objects such as a forest stand were most relevant followed by individual objects such as single trees and, lastly, more generalized categorizes or meta-objects such as "forested area". We have drawn some conclusions that will help to clarify the different types of scale in regard to their practical use.
Comparison of contemporaneous Sentinel-2 and EnMAP data for vegetation index-based estimation of leaf area index and canopy closure of a boreal forest
Juola J, Hovi A and Rautiainen M
Data from the new hyperspectral satellite missions such as EnMAP are anticipated to refine leaf area index (LAI) or canopy closure (CC) monitoring in conifer-dominated forest areas. We compared contemporaneous multispectral and hyperspectral satellite images from Sentinel-2 MSI (S2) and EnMAP and assessed whether hyperspectral images offer added value in estimating LAI, effective LAI (LAIeff), and CC in a European boreal forest area. The estimations were performed using univariate and multivariate generalized additive models. The models utilized field measurements of LAI and CC from 38 forest plots and an extensive set of vegetation indices (VIs) derived from the satellite data. The best univariate models for each of the three response variables had small differences between the two sensors, but in general, EnMAP had more well-performing VIs which was reflected in the better multivariate model performances. The best performing multivariate models with the EnMAP data had ~1-6% lower relative RMSEs than S2. Wavelengths near the green, red-edge, and shortwave infrared regions were frequently utilized in estimating LAI, LAIeff, and CC with EnMAP data. Because EnMAP could estimate LAI better, the results suggest that EnMAP may be more useful than multispectral satellite sensors, such as S2, in monitoring biophysical variables of coniferous-dominated forests.