COMPUTERS & MATHEMATICS WITH APPLICATIONS

Weak Galerkin finite element method for second order problems on curvilinear polytopal meshes with Lipschitz continuous edges or faces
Guan Q, Queisser G and Zhao W
In this paper, we propose new basis functions defined on curved sides or faces of curvilinear elements (polygons or polyhedrons with curved sides or faces) for the weak Galerkin finite element method. Those basis functions are constructed by collecting linearly independent traces of polynomials on the curved sides/faces. We then analyze the modified weak Galerkin method for the elliptic equation and the interface problem on curvilinear polytopal meshes with Lipschitz continuous edges or faces. The method is designed to deal with less smooth complex boundaries or interfaces. Optimal convergence rates for and errors are obtained, and arbitrary high orders can be achieved for sufficiently smooth solutions. The numerical algorithm is discussed and tests are provided to verify theoretical findings.
Effect of constitutive law on the erythrocyte membrane response to large strains
Pepona M, Gounley J and Randles A
Three constitutive laws, that is the Skalak, neo-Hookean and Yeoh laws, commonly employed for describing the erythrocyte membrane mechanics are theoretically analyzed and numerically investigated to assess their accuracy for capturing erythrocyte deformation characteristics and morphology. Particular emphasis is given to the nonlinear deformation regime, where it is known that the discrepancies between constitutive laws are most prominent. Hence, the experiments of optical tweezers and micropipette aspiration are considered here, for which relationships between the individual shear elastic moduli of the constitutive laws can also be established through analysis of the tension-deformation relationship. All constitutive laws were found to adequately predict the axial and transverse deformations of a red blood cell subjected to stretching with optical tweezers for a constant shear elastic modulus value. As opposed to Skalak law, the neo-Hookean and Yeoh laws replicated the erythrocyte membrane folding, that has been experimentally observed, with the trade-off of sustaining significant area variations. For the micropipette aspiration, the suction pressure-aspiration length relationship could be excellently predicted for a fixed shear elastic modulus value only when Yeoh law was considered. Importantly, the neo-Hookean and Yeoh laws reproduced the membrane wrinkling at suction pressures close to those experimentally measured. None of the constitutive laws suffered from membrane area compressibility in the micropipette aspiration case.
A mixed virtual element method for Biot's consolidation model
Wang F, Cai M, Wang G and Zeng Y
In this paper, we shall present a weak virtual element method for the standard three field poroelasticity problem on polytopal meshes. The flux velocity and pressure are approximated by the low order virtual element and the piecewise constant, while the elastic displacement is discretized by the virtual element with some tangential polynomials on element boundaries. A fully discrete scheme is then given by choosing the backward Euler for the time discretization. With some assumptions on the exact solutions, we prove that the convergence order is of order 1 with respect to the meshsize and the time step, and the hidden constants are independent of the parameters of the problems. Some numerical experiments are given to verify the results.
A stochastic collocation approach for parabolic PDEs with random domain deformations
Castrillón-Candás JE and Xu J
In this article we analyze the linear parabolic partial differential equation with a stochastic domain deformation. In particular, we concentrate on the problem of numerically approximating the statistical moments of a given Quantity of Interest (QoI). The geometry is assumed to be random. The parabolic problem is remapped to a fixed deterministic domain with random coefficients and shown to admit an extension on a well defined region embedded in the complex hyperplane. The stochastic moments of the QoI are computed by employing a collocation method in conjunction with an isotropic Smolyak sparse grid. Theoretical sub-exponential convergence rates as a function to the number of collocation interpolation knots are derived. Numerical experiments are performed and they confirm the theoretical error estimates.
Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling
Kamensky D, Evans JA, Hsu MC and Bazilevs Y
This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.
Constrained optimal control applied to vaccination for influenza
Kim J, Kwon HD and Lee J
The efficient time schedule and prioritization of vaccine supplies are important in mitigating impact of an influenza pandemic. In practice, there are restrictions associated with limited vaccination coverage and the maximum daily vaccine administration. We extend previous work on optimal control for influenza to reflect these realistic restrictions using mixed constraints on state and control variables. An optimal control problem is formulated with the aim of minimizing the number of infected individuals while considering intervention costs. Time-dependent vaccination is computed and analysed using a model incorporating heterogeneity in population structure under different settings of transmissibility levels, vaccine coverages, and time delays.
General spline filters for discontinuous Galerkin solutions
Peters J
The discontinuous Galerkin (dG) method outputs a sequence of polynomial pieces. Post-processing the sequence by Smoothness-Increasing Accuracy-Conserving (SIAC) convolution not only increases the smoothness of the sequence but can also improve its accuracy and yield superconvergence. SIAC convolution is considered optimal if the SIAC kernels, in the form of a linear combination of B-splines of degree , reproduce polynomials of degree 2. This paper derives simple formulas for computing the optimal SIAC spline coefficients for the general case including non-uniform knots.
On the error propagation of semi-Lagrange and Fourier methods for advection problems
Einkemmer L and Ostermann A
In this paper we study the error propagation of numerical schemes for the advection equation in the case where high precision is desired. The numerical methods considered are based on the fast Fourier transform, polynomial interpolation (semi-Lagrangian methods using a Lagrange or spline interpolation), and a discontinuous Galerkin semi-Lagrangian approach (which is conservative and has to store more than a single value per cell). We demonstrate, by carrying out numerical experiments, that the worst case error estimates given in the literature provide a good explanation for the error propagation of the interpolation-based semi-Lagrangian methods. For the discontinuous Galerkin semi-Lagrangian method, however, we find that the characteristic property of semi-Lagrangian error estimates (namely the fact that the error increases proportionally to the number of time steps) is not observed. We provide an explanation for this behavior and conduct numerical simulations that corroborate the different qualitative features of the error in the two respective types of semi-Lagrangian methods. The method based on the fast Fourier transform is exact but, due to round-off errors, susceptible to a linear increase of the error in the number of time steps. We show how to modify the Cooley-Tukey algorithm in order to obtain an error growth that is proportional to the square root of the number of time steps. Finally, we show, for a simple model, that our conclusions hold true if the advection solver is used as part of a splitting scheme.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia K and Wei GW
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for continuous or continuous solutions associated with a Lipschitz continuous interface in a 3D setting.
Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator
Abert C, Hrkac G, Page M, Praetorius D, Ruggeri M and Suess D
We propose and analyze a decoupled time-marching scheme for the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and nonmagnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved.
An almost symmetric Strang splitting scheme for nonlinear evolution equations
Einkemmer L and Ostermann A
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.
Axioms of adaptivity
Carstensen C, Feischl M, Page M and Praetorius D
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the [Formula: see text]-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions.
Correlation Structure of Fractional Pearson Diffusions
Leonenko NN, Meerschaert MM and Sikorskii A
The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.
Harmonic Solutions of a Mixed Boundary Problem Arising in the Modeling of Macromolecular Transport into Vessel Walls
Balsim I, Neimark MA and Rumschitzki D
The earliest events leading to atherosclerosis involve the transport of low density lipooprotein (LDL) cholesterol from the blood across endothelial cells that line the artery wall. Laplace's equation describes the steady state diffusion profile of a tracer through the vessel wall. This gives rise to a boundary value problem with mixed Dirichlet and Robin conditions. We construct a linear system of integral equations that approximate the coefficients of the series expansion of the solution. We prove the existence of the solution to this problem analytically by using Gershgorin's theorem on the location of the eigenvalues of the corresponding matrix. We give a uniqueness proof using Miranda's theorem [1]. The analytical construction method forms the basis for a numerical calculation algorithm. We apply our results to the transport problem above and use them to interpret experimental observations of the growth of localized tracer leakage spots with tracer circulation time.
Lattice Boltzmann simulation of blood flow in digitized vessel networks
Sun C and Munn LL
Efficient flow of red blood cells (RBCs) and white blood cells (WBCs) through the microcirculation is necessary for oxygen and nutrient delivery as well as immune cell function. Because blood is a dense particulate suspension, consisting of 40% RBCs by volume, it is difficult to analyze the physical mechanisms by which individual blood cells contribute to the bulk flow properties of blood. Both experimental and computational approaches are hindered by these non-Newtonian properties, and predicting macroscopic blood flow characteristics such as viscosity has historically been an empirical process. In order to examine the effect of the individual cells on macroscopic blood rheology, we developed a lattice Boltzmann model that considers the blood as a suspension of particles in plasma, accounting explicitly for cell-cell and cell-wall interactions. Previous studies have concluded that the abundance of leukocyte rolling in postcapillary venules is due to interactions between red blood cells and leukocytes as they enter postcapillary expansions. Similar fluid dynamics may be involved in the initiation of rolling at branch points, a phenomenon linked to atherosclerosis. The lattice Boltzmann approach is used to analyze the interactions of red and white blood cells as they flow through vascular networks digitized from normal and tumor tissue. A major advantage of the lattice-Boltzmann method is the ability to simulate particulate flow dynamically and in any geometry. Using this approach, we can accurately determine RBC-WBC forces, particle trajectories, the pressure changes in each segment that accompany cellular traffic in the network, and the forces felt by the vessel wall at any location. In this technique, intravital imaging using vascular contrast agents produces the network outline that is fed to the lattice-Boltzmann model. This powerful and flexible model can be used to predict blood flow properties in any vessel geometry and with any blood composition.
Approximation for age-structured population models using projection methods
Barr TH
"In this paper we present a class of rapidly convergent numerical schemes to solve the Sharpe-Lotka model equation from age-dependent population dynamics. This work is based on spline approximation techniques described by Banks and Kappel for functional differential equations. We provide a motivation for and description of a generalized problem which under suitable conditions is equivalent to the Sharpe-Lotka problem, we describe approximation in general which exploits the Hilbert space structure in which the generalized problem is set, and for a particular space of approximating functions we obtain estimates on the rates of convergence."