Quaternary Geochronology

Intra-crystalline protein diagenesis (IcPD) in . Part I: Isolation and testing of the closed system
Demarchi B, Rogers K, Fa DA, Finlayson CJ, Milner N and Penkman KE
This study successfully isolates a fraction of intra-crystalline proteins from shells of the marine gastropod and assesses the suitability of these proteins for IcPD (Intra-crystalline Protein Diagenesis) geochronology. We discuss the mineralogical composition of this gastropod, investigated for the first time by X-ray diffraction mapping, and use the results to inform our sampling strategy. The potential of the calcitic rim and of a bulk sample (containing both apex and rim) of the shell to act as stable repositories for the intra-crystalline proteins during diagenesis is examined. The composition and the diagenetic behaviour of the intra-crystalline proteins isolated from different locations within the shell are compared, highlighting the necessity of targeting consistent sampling positions. We induced artificial diagenesis of both intra-crystalline and whole-shell proteins by conducting high-temperature experiments in hydrous environment; this allowed us to quantify the loss of amino acids by leaching and therefore evaluate the open- or closed-system behaviour of the different fractions of proteins. The results obtained provide further confirmation that patterns of diagenesis vary according to the protein sequence, structure, and location within or outside the intra-crystalline fraction. As is frequently found in the fossil record, both in archaeological and geological contexts, the application of IcPD geochronology to this biomineral opens up the possibility to obtain reliable age information from a range of sites in different areas of the world.
Intra-crystalline protein diagenesis (IcPD) in . Part II: Breakdown and temperature sensitivity
Demarchi B, Collins MJ, Tomiak PJ, Davies BJ and Penkman KE
Artificial diagenesis of the intra-crystalline proteins isolated from was induced by isothermal heating at 140 °C, 110 °C and 80 °C. Protein breakdown was quantified for multiple amino acids, measuring the extent of peptide bond hydrolysis, amino acid racemisation and decomposition. The patterns of diagenesis are complex; therefore the kinetic parameters of the main reactions were estimated by two different methods: 1) a well-established approach based on fitting mathematical expressions to the experimental data, e.g. first-order rate equations for hydrolysis and power-transformed first-order rate equations for racemisation; and 2) an alternative model-free approach, which was developed by estimating a "scaling" factor for the independent variable (time) which produces the best alignment of the experimental data. This method allows the calculation of the relative reaction rates for the different temperatures of isothermal heating. High-temperature data were compared with the extent of degradation detected in sub-fossil specimens of known age, and we evaluated the ability of kinetic experiments to mimic diagenesis at burial temperature. The results highlighted a difference between patterns of degradation at low and high temperature and therefore we recommend caution for the extrapolation of protein breakdown rates to low burial temperatures for geochronological purposes when relying solely on kinetic data.
Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells
Penkman KE, Kaufman DS, Maddy D and Collins MJ
When mollusc shells are analysed conventionally for amino acid geochronology, the entire population of amino acids is included, both inter- and intra-crystalline. This study investigates the utility of removing the amino acids that are most susceptible to environmental effects by isolating the fraction of amino acids encapsulated within mineral crystals of mollusc shells (intra-crystalline fraction). Bleaching, heating and leaching (diffusive loss) experiments were undertaken on modern and fossil Corbicula fluminalis, Margaritifera falcata, Bithynia tentaculata and Valvata piscinalis shells. Exposure of powdered mollusc shells to concentrated NaOCl for 48 h effectively reduced the amino acid content of the four taxa to a residual level, assumed to represent the intra-crystalline fraction. When heated in water at 140 degrees C for 24 h, only 1% of amino acids were leached from the intra-crystalline fraction of modern shells compared with 40% from whole shell. Free amino acids were more effectively retained in the intra-crystalline fraction, comprising 55% (compared with 18%) of the whole shell after 24 h at 140 degrees C. For fossil gastropods, the inter-shell variability in D/L values for the intra-crystalline fraction of a single-age population was reduced by 50% compared with conventionally analysed shells. In contrast, analysis of the intra-crystalline fraction of C. fluminalis does not appear to improve the results for this taxon, possibly due to variability in shell ultrastructure. Nonetheless, the intra-crystalline fraction in gastropods approximates a closed system of amino acids and appears to provide a superior subset of amino acids for geochronological applications.