Journal of Flow Chemistry

Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-Iodo-2'-deoxyuridine (or cytidine)
Gaware S, Kori S, Serrano JL, Dandela R, Hilton S, Sanghvi YS and Kapdi AR
Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol.
A perspective on automated advanced continuous flow manufacturing units for the upgrading of biobased chemicals toward pharmaceuticals
Kaisin G, Bovy L, Joyard Y, Maindron N, Tadino V and Monbaliu JM
Biomass is a renewable, almost infinite reservoir of a large diversity of highly functionalized chemicals. The conversion of biomass toward biobased platform molecules through biorefineries generally still lacks economic viability. Profitability could be enhanced through the development of new market opportunities for these biobased platform chemicals. The fine chemical industry, and more specifically the manufacturing of pharmaceuticals is one of the sectors bearing significant potential for these biobased building blocks to rapidly emerge and make a difference. There are, however, still many challenges to be dealt with before this market can thrive. Continuous flow technology and its integration for the upgrading of biobased platform molecules for the manufacturing of pharmaceuticals is foreseen as a game-changer. This perspective reflects on the main challenges relative to chemical, process, regulatory and supply chain-related burdens still to be addressed. The implementation of integrated continuous flow processes and their automation into modular units will help for tackling with these challenges.
Multicapillary Flow Reactor: Synthesis of 1,2,5-Thiadiazepane 1,1-Dioxide Library Utilizing One-Pot Elimination and Inter-/Intramolecular Double aza-Michael Addition Via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS)
Ullah F, Zang Q, Javed S, Zhou A, Knudtson CA, Bi D, Hanson PR and Organ MG
A microwave-assisted, continuous-flow organic synthesis (MACOS) protocol for the synthesis of functionalized 1,2,5-thiadiazepane 1,1-dioxide library, utilizing a one-pot elimination and inter-/intramolecular double aza-Michael addition strategy is reported. The optimized protocol in MACOS was utilized for scale-out and further extended for library production using a multicapillary flow reactor. A 50-member library of 1,2,5-thiadiazepane 1,1-dioxides was prepared on a 100- to 300-mg scale with overall yields between 50 and 80% and over 90 % purity determined by proton nuclear magnetic resonance (H-NMR) spectroscopy.
An Automated Process for a Sequential Heterocycle/Multicomponent Reaction: Multistep Continuous Flow Synthesis of 5-(Thiazol-2-yl)-3,4-Dihydropyrimidin-2()-ones
Pagano N, Herath A and Cosford ND
The first example of a sequential heterocycle formation/multicomponent reaction using an automated continuous flow microreactor assembly is reported. Consecutive Hantzsch thiazole synthesis, deketalization, and Biginelli multicomponent reaction provides rapid and efficient access to highly functionalized, pharmacologically significant 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2()-ones without isolation of intermediates. These complex small molecules are generated in reaction times less than 15 min and in high yields (39-46%) over three continuous chemical steps.
Accessing Stereochemically Rich Sultams via Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS) Scale-out
Organ MG, Hanson PR, Rolfe A, Samarakoon TB and Ullah F
The generation of stereochemically-rich benzothiaoxazepine-1,1'-dioxides for enrichment of high-throughput screening collections is reported. Utilizing a microwave-assisted, continuous flow organic synthesis platform (MACOS), scale-out of core benzothiaoxazepine-1,1'-dioxide scaffolds has been achieved on multi-gram scale using an epoxide opening/S(N)Ar cyclization protocol. Diversification of these sultam scaffolds was attained via a microwave-assisted intermolecular S(N)Ar reaction with a variety of amines. Overall, a facile, 2-step protocol generated a collection of benzothiaoxazepine-1,1'-dioxides possessing stereochemical complexity in rapid fashion, where all 8 stereoisomers were accessed from commercially available starting materials.
Design and application of a modular and scalable electrochemical flow microreactor
Laudadio G, de Smet W, Struik L, Cao Y and Noël T
Electrochemistry constitutes a mild, green and versatile activation method of organic molecules. Despite these innate advantages, its widespread use in organic chemistry has been hampered due to technical limitations, such as mass and heat transfer limitations which restraints the scalability of electrochemical methods. Herein, we describe an undivided-cell electrochemical flow reactor with a flexible reactor volume. This enables its use in two different modes, which are highly relevant for flow chemistry applications, including a serial (volume ranging from 88 μL/channel up to 704 μL) or a parallel mode (numbering-up). The electrochemical flow reactor was subsequently assessed in two synthetic transformations, which confirms its versatility and scale-up potential.
A letter to the flow community
Noël T
Reactor design and selection for effective continuous manufacturing of pharmaceuticals
Hu C
Pharmaceutical production remains one of the last industries that predominantly uses batch processes, which are inefficient and can cause drug shortages due to the long lead times or quality defects. Consequently, pharmaceutical companies are transitioning away from outdated batch lines, in large part motivated by the many advantages of continuous manufacturing (e.g., low cost, quality assurance, shortened lead time). As chemical reactions are fundamental to any drug production process, the selection of reactor and its design are critical to enhanced performance such as improved selectivity and yield. In this article, relevant theories, and models, as well as their required input data are summarized to assist the reader in these tasks, focusing on continuous reactions. Selected examples that describe the application of plug flow reactors (PFRs) and continuous-stirred tank reactors (CSTRs)-in-series within the pharmaceutical industry are provided. Process analytical technologies (PATs), which are important tools that provide real-time in-line continuous monitoring of reactions, are recommended to be considered during the reactor design process (e.g., port design for the PAT probe). Finally, other important points, such as density change caused by thermal expansion or solid precipitation, clogging/fouling, and scaling-up, are discussed.
Continuous flow synthesis of Celecoxib from 2-bromo-3,3,3-trifluoropropene
Ivanova M, Legros J, Poisson T and Jubault P
We describe the total flow synthesis of the widely prescribed anti-inflammatory COX-2 inhibitor Celecoxib from 2-bromo-3,3,3-trifluoropropene, as a convenient and available trifluoromethyl building block, to generate trifluoropropynyl lithium and to trap it immediately with an aldehyde. Oxidation of the obtained alcohol into ketone followed by condensation with 4-sulfamidophenylhydrazine afforded the targeted drug with full regioselectivity. It is noteworthy that the quality of these flow reactions (50% overall yield within 1 h cumulated residence time over 3 steps) directly furnished the target API and intermediates with excellent purity.
3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow
Valotta A, Maier MC, Soritz S, Pauritsch M, Koenig M, Brouczek D, Schwentenwein M and Gruber-Woelfler H
In recent years, 3D printing has emerged in the field of chemical engineering as a powerful manufacturing technique to rapidly design and produce tailor-made reaction equipment. In fact, reactors with complex internal geometries can be easily fabricated, optimized and interchanged in order to respond to precise process needs, such as improved mixing and increased surface area. These advantages make them interesting especially for catalytic applications, since customized structured bed reactors can be easily produced. 3D printing applications are not limited to reactor design, it is also possible to realize functional low cost alternatives to analytical equipment that can be used to increase the level of process understanding while keeping the investment costs low. In this work, in-house designed ceramic structured inserts printed via vat photopolymerization (VPP) are presented and characterized. The flow behavior inside these inserts was determined with residence time distribution (RTD) experiments enabled by in-house designed and 3D printed inline photometric flow cells. As a proof of concept, these structured inserts were fitted in an HPLC column to serve as solid inorganic supports for the immobilization of the enzyme Phenolic acid Decarboxylase (PAD), which catalyzes the decarboxylation of cinnamic acids. The conversion of coumaric acid to vinylphenol was chosen as a model system to prove the implementation of these engineered inserts in a continuous biocatalytic application with high product yield and process stability. The setup was further automated in order to quickly identify the optimum operating conditions via a Design of Experiments (DoE) approach. The use of a systematic optimization, together with the adaptability of 3D printed equipment to the process requirements, render the presented approach highly promising for a more feasible implementation of biocatalysts in continuous industrial processes. Graphical abstract.
Continuous flow process for preparing budesonide
Phull MS, Jadav SS, Bohara CS, Gundla R and Mainkar PS
Budesonide, a glucocorticosteroid, is used as anti-asthmatic drug that became generic in 2019. Existing preparation methods of budesonide require utilization of corrosive acids and involve expensive purification process. Thus, a new cost-effective continuous flow process for the synthesis of budesonide which belongs to the class of 16,17 acetals of pregnane core, is discussed in the present research findings. Flow reactor parameters such as flow rate, temperature, residence time, solution volumes, anti-solvents and reactor frequency are subjected to investigation on the preparation of molar ratio of budesonide epimers. Further, the suitable parameters entail for obtaining the desired molar ratio of epimers. In another aspect, particle size optimization studies are also performed to get the desired budesonide solid product. A continuous flow process for preparation of budesonide is identified from the present research investigation which can be readily transferred to industrial scale up.
Scaled up and telescoped synthesis of propofol under continuous-flow conditions
Martins GM, Magalhães MFA, Brocksom TJ, Bagnato VS and de Oliveira KT
Herein we report a machine-assisted and scaled-up synthesis of propofol, a short-acting drug used in procedural sedation, which is extensively in demand during this COVID-19 pandemic. The continuous-flow protocol proved to be efficient, with great potential for industrial translation, reaching a production up to 71.6 g per day with process intensification (24 h-continuous experiments). We have successfully telescoped a continuous flow approach obtaining 5.74 g of propofol with productivity of 23.0 g/day (6 h-continuous experiment), proving the robustness of the method in both separated and telescoped modes. Substantial progress was also achieved for the in-line workup, which provides greater safety and less waste, also relevant for industrial application. Overall, the synthetic strategy is based on the Friedel-Crafts di-isopropylation of low-cost -hydroxybenzoic acid, followed by a decarboxylation reaction, giving propofol in up to 84% overall yield and very low by-product formation. The continuous flow synthesis of propofol is presented as a two-step protocol. The isopropylated intermediate was obtained from 4-hydroxybenzoic acid () in up 43.8 g, 85% yield and 30 min residence time. Propofol was then obtained in 71.6 g, 87% yield, and 16 min residence time. A safe and cost-competitive machine-assisted protocol is described with a process intensification demonstration (24 h experiments) and a telescoped process intensification (6 h).
The continuous flow synthesis of azos
McCormack AT and Stephens JC
Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.