NOVEL HIGH-STRENGTH POLYESTER COMPOSITE SCAFFOLDS FOR BONE REGENERATION
Repair of critical sized bone defects, particularly in load-bearing areas, is a major clinical problem that requires surgical intervention and implantation of biological or engineered grafts. For load-bearing sites, it is essential to use engineered grafts that have both sufficient mechanical strength and appropriate pore properties to support bone repair and tissue regeneration. Unfortunately, the mechanical properties of such grafts are often compromised due to the creation of pores required to facilitate tissue ingrowth following implantation. To overcome the limitations associated with porous scaffolds and their reduced mechanical strength, we have developed a methodology for creating a solid structure that retains its bulk mechanical properties while also evolving into a porous structure in a biological environment through degradation and erosion. In this study, we utilized polyesters that have been approved by the FDA, including poly (lactic acid) (PLA), poly(glycolic acid) (PGA), their copolymer PLGA (PLGA, with a ratio of 85:15 and 50:50 of PLA:PGA), and poly(caprolactone) (PCL). These polymers and their ceramic composites with tricalcium phosphate (TCP) were compression molded into solid forms, which exhibited mechanical properties with compressive modulus as high as 2745 ± 364 MPa within the range of human trabecular bone and in the lower range of human cortical bone. The use of fast-degrading PLGA (50:50) and PGA as porogens allowed the formation of pores within the solid structures due to their degradation, and the TCP acts as a buffering agent to neutralize their acidic degradation byproducts. These scaffolds facilitated the growth of new blood vessels and tissue ingrowth in a subcutaneous implantation model. In addition, in a rat critical-sized mandibular bone defects these scaffolds supported bone growth with 70% of new bone volume fraction. Furthermore, the extent of bone regeneration was found to be higher for the scaffolds with bone morphogenic proteins (BMP2), indicating their suitability for bone repair and regeneration.
Direct jet coaxial electrospinning of axon-mimicking fibers for diffusion tensor imaging
Hollow polymer microfibers with variable microstructural and hydrophilic properties were proposed as building elements to create axon-mimicking phantoms for validation of diffusion tensor imaging (DTI). The axon-mimicking microfibers were fabricated in a mm-thick 3D anisotropic fiber strip, by direct jet coaxial electrospinning of PCL/polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide (PEO) as core. Hydrophilic PCL-PSi fiber strips were first obtained by carefully selecting appropriate solvents for the core and appropriate fiber collector rotating and transverse speeds. The porous cross-section and anisotropic orientation of axon-mimicking fibers were then quantitatively evaluated using two ImageJ plugins-nearest distance (ND) and directionality based on their scanning electron microscopy (SEM) images. Third, axon-mimicking phantom was constructed from PCL-PSi fiber strips with variable porous-section and fiber orientation and tested on a 3T clinical MR scanner. The relationship between DTI measurements (mean diffusivity [MD] and fractional anisotropy [FA]) of phantom samples and their pore size and fiber orientation was investigated. Two key microstructural parameters of axon-mimicking phantoms including normalized pore distance and dispersion of fiber orientation could well interpret the variations in DTI measurements. Two PCL-PSi phantom samples made from different regions of the same fiber strips were found to have similar MD and FA values, indicating that the direct jet coaxial electrospun fiber strips had consistent microstructure. More importantly, the MD and FA values of the developed axon-mimicking phantoms were mostly in the biologically relevant range.
Disinfectants role in the prevention of spreading the COVID-19 and other infectious diseases: The need for functional polymers!
The spreading of coronavirus through droplets and aerosols of an infected person is a well-known mechanism. The main protection methods from this virus are using disinfectants/sanitizers, face masks, keeping social distance, and vaccination. With the rapid mutations of the virus accompanied by its features and contagions changing, new advanced functional materials development is highly needed. The usage of disinfectants/sanitizers in excess generates poisonous effects among the general public. Effective and simultaneously, human-friendly sanitizers or disinfectants are required to prevent the poisoning and the associated issues. They minimize the toxic effects of the currently available materials by rapid action, high potential, long-term stability, and excellent biocompatible nature. Here, we summarize the available antiviral materials, their features, and their limitations. We highlight the need to develop an arsenal of advanced functional antiviral polymers with intrinsic bioactive functionalities or released bioactive moieties in a controlled manner for rapid and long-term actions for current and future anticipated viral outbreaks.
Grafting Polymer Brushes by ATRP from Functionalized Poly(ether ether ketone) Microparticles
Poly(ether ether ketone) (PEEK) is a semi-crystalline thermoplastic with excellent mechanical and chemical properties. PEEK exhibits a high degree of resistance to thermal, chemical, and bio-degradation. PEEK is used as biomaterial in the field of orthopaedic and dental implants; however, due to its intrinsic hydrophobicity and inert surface, PEEK does not effectively support bone growth. Therefore, new methods to modify PEEK's surface to improve osseointegration are key to next generation polymer implant materials. Unfortunately, PEEK is a challenging material to both modify and subsequently characterize thus stymieing efforts to improve PEEK osseointegration. In this manuscript, we demonstrate how surface-initiated atom transfer radical polymerization (SI-ATRP) can be used to modify novel PEEK microparticles (PMP). The hard core-soft shell microparticles were synthesized and characterized by DLS, ATR-IR, XPS and TEM, indicating the grafted materials increased solubility and stability in a range of solvents. The discovered surface grafted PMP can be used as compatibilizers for the polymer-tissue interface.
A self-cured glass-ionomer cement with improved antibacterial function and hardness
A novel antimicrobial dental self-cured glass-ionomer cement has been developed and evaluated. Alumina filler particles were covalently coated with an antibacterial polymer and blended into a self-cured glass-ionomer cement formulation. Surface hardness and bacterial viability were used to evaluate the modified cements. Results showed that the modified cements exhibited a significantly enhanced antibacterial activity along with improved surface hardness. Effects of antibacterial moiety content, alumina particle size and loading, and total filler content were investigated. It was found that increasing antibacterial moiety content, particle size and loading, and total filler content generally increased surface hardness. Increasing antibacterial moiety, filler loading and total filler content increased antibacterial activity. On the other hand, increasing particle size showed a negative impact on antibacterial activity. The leaching tests indicate no cytotoxicity produced from the modified cements to both bacteria and 3T3 mouse fibroblast cells.
Effect of nitrogen plasma treatment on the crystallinity and self-bonding of polyetheretherketone (PEEK) for biomedical applications
Polyetheretherketone (PEEK) is a thermoplastic material with outstanding properties and high potential for biomedical applications, including hermetic encapsulation of active implantable devices. Different biomedical grade PEEK films with initial degree of crystallinity ranging from 8% to 32% (with or without mineral filling) were inspected. PEEK surfaces were treated with nitrogen RF plasma and the effects on materials crystallinity and self-bonding were evaluated. In particular, the relationship between auto-adhesive properties and crystalline content of PEEK before and after plasma treatment was examined. PEEK samples showed different bonding strength depending on their degree of crystallinity, with higher self-bonding performance of mineral-filled semi-crystalline films. XRD did not show any modification of the PEEK microstructure as a result of plasma treatment, excluding a significant influence of crystallinity on the self-bonding mechanisms. Nevertheless, plasma surface treatment successfully improved the self-bonding strength of all the PEEK films tested, with larger increase in the case of semi-crystalline unfilled materials. This could be interpreted to the increase in chain mobility that led to interfacial interpenetration of the amorphous phase.
Characterization and optimization of a positively charged poly (ethylene glycol)diacrylate hydrogel as an actuating muscle tissue engineering scaffold
Hydrogels have been used for many applications in tissue engineering and regenerative medicine due to their versatile material properties and similarities to the native extracellular matrix. Poly (ethylene glycol) diacrylate (PEGDA) is an ionic electroactive polymer (EAP), a material that responds to an electric field with a change in size or shape while in an ionic solution, that may be used in the development of hydrogels. In this study, we have investigated a positively charged EAP that can bend without the need of external ions. PEGDA was modified with the positively charged molecule 2-(methacryloyloxy)ethyl-trimethylammonium chloride (MAETAC) to provide its own positive ions. This hydrogel was then characterized and optimized for bending and cellular biocompatibility with C2C12 mouse myoblast cells. Studies show that the polymer responds to an electric field and supports C2C12 viability.
Insulin immobilized PCL-cellulose acetate micro-nanostructured fibrous scaffolds for tendon tissue engineering
Use of growth factors as biochemical molecules to elicit cellular differentiation is a common strategy in tissue engineering. However, limitations associated with growth factors, such as short half-life, high effective physiological doses, and high costs, have prompted the search for growth factor alternatives, such as growth factor mimics and other proteins. This work explores the use of insulin protein as a biochemical factor to aid in tendon healing and differentiation of cells on a biomimetic electrospun micro-nanostructured scaffold. Dose response studies were conducted using human mesenchymal stem cells (MSCs) in basal media supplemented with varied insulin concentrations. A dose of 100-ng/mL insulin showed increased expression of tendon markers. Synthetic-natural blends of various ratios of polycaprolactone (PCL) and cellulose acetate (CA) were used to fabricate micro-nanofibers to balance physicochemical properties of the scaffolds in terms of mechanical strength, hydrophilicity, and insulin delivery. A 75:25 ratio of PCL:CA was found to be optimal in promoting cellular attachment and insulin immobilization. Insulin insulin deliveryimmobilized fiber matrices also showed increased expression of tendon phenotypic markers by MSCs similar to findings with insulin supplemented media, indicating preservation of insulin bioactivity. Insulin functionalized scaffolds may have potential applications in tendon healing and regeneration.
Load-bearing biodegradable polycaprolactone-poly (lactic-co-glycolic acid)- beta tri-calcium phosphate scaffolds for bone tissue regeneration
A biodegradable scaffold with tissue ingrowth and load-bearing capabilities is required to accelerate the healing of bone defects. However, it is difficult to maintain the mechanical properties as well as biodegradability and porosity (necessary for bone ingrowth) at the same time. Therefore, in the present study, polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA5050) were mixed in varying ratio and incorporated with 20 wt.% βTCP. The mixture was shaped under pressure into originally non-porous cylindrical constructs. It is envisioned that the fabricated constructs will develop porosity with the time-dependent biodegradation of the polymer blend. The mechanical properties will be sustained since the decrease in mechanical properties associated with the dissolution of the PLGA and the formation of the porous structure will be compensated with the new bone formation and ingrowth. To prove the hypothesis, we have systematically studied the effects of samples composition on the time-dependent dissolution behavior, pore formation, and mechanical properties of the engineered samples, . The highest initial (of as-prepared samples) values of the yield strength (0.021±0.002 GPa) and the Young's modulus (0.829±0.096 GPa) were exhibited by the samples containing 75 wt.% of PLGA. Increase of the PLGA concentration from 25 wt.% to 75 wt.% increased the rate of biodegradation by a factor of 3 upon 2 weeks in phosphate buffered saline (1× PBS). The overall porosity and the pore sizes increased with the dissolution time indicating that the formation of in-situ pores can indeed enable the migration of cells followed by vascularization and bone growth.
Bioactive polymeric formulations for wound healing
Ricinoleic acid (RA) has potential to promote wound healing because of its analgesic and anti-inflammatory properties. This study investigates the synthesis and characterization of RA liposomes infused in a hydrogel for topical application. Lecithin liposomes containing RA were prepared and incorporated into a chitosan solution and were subsequently cross-linked with dialdehyde β-cyclodextrin (Di-β-CD). Chitosan/Di-β-CD concentrations and reaction temperatures were varied to alter gelation time, water content, and mechanical properties of the hydrogel in an effort to obtain a wide range of RA release profiles. Hydrogel cross-linking was confirmed by spectroscopy, and liposome and carrier hydrogel morphology via microscopy. Chitosan, Di-β-CD, and liposome concentrations within the formulation affected the extent of matrix swelling, mechanical strength, and pore and overall morphology. Higher cross-linking density of the hydrogel led to lower water uptake and slower release rate of RA. Optimized formulations resulted in a burst release of RA followed by a steady release pattern accounting for 80% of the encapsulated RA over a period of 48 hours. However, RA concentrations above 0.1 mg/mL were found to be cytotoxic to fibroblast cultures in vitro because of the oily nature of RA. These formulations promoted wound healing when used to treat full thickness skin wounds (2 cm) in Wister male rats. The wound contraction rates were significantly higher compared to a commercially available topical cream after a time period of 21 days. Histopathological analysis of the RA-liposomal chitosan hydrogel group showed that the epidermis, dermis, and subcutaneous skin layers displayed an accelerated yet normal healing compared to control group.
Toward 3D Printed Hydrogen Storage Materials Made with ABS-MOF Composites
The push to advance efficient, renewable, and clean energy sources has brought with it an effort to generate materials that are capable of storing hydrogen. Metal-organic framework materials (MOFs) have been the focus of many such studies as they are categorized for their large internal surface areas. We have addressed one of the major shortcomings of MOFs (their processibility) by creating and 3D printing a composite of acrylonitrile butadiene styrene (ABS) and MOF-5, a prototypical MOF, which is often used to benchmark H uptake capacity of other MOFs. The ABS-MOF-5 composites can be printed at MOF-5 compositions of 10% and below. Other physical and mechanical properties of the polymer (glass transition temperature, stress and strain at the breaking point, and Young's modulus) either remain unchanged or show some degree of hardening due to the interaction between the polymer and the MOF. We do observe some MOF-5 degradation through the blending process, likely due to the ambient humidity through the purification and solvent casting steps. Even with this degradation, the MOF still retains some of its ability to uptake H, seen in the ability of the composite to uptake more H than the pure polymer. The experiments and results described here represent a significant first step toward 3D printing MOF-5-based materials for H storage.
Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration
The hemicellulose xylan, which has immunomodulatory effects, has been combined with chitosan to form a composite hydrogel to improve the healing of bone fractures. This thermally responsive and injectable hydrogel, which is liquid at room temperature and gels at physiological temperature, improves the response of animal host tissue compared with similar pure chitosan hydrogels in tissue engineering models. The composite hydrogel was placed in a subcutaneous model where the composite hydrogel is replaced by host tissue within 1 week, much earlier than chitosan hydrogels. A tibia fracture model in mice showed that the composite encourages major remodeling of the fracture callus in less than 4 weeks. A non-union fracture model in rat femurs was used to demonstrate that the composite hydrogel allows bone regeneration and healing of defects that with no treatment are unhealed after 6 weeks. These results suggest that the xylan/chitosan composite hydrogel is a suitable bone graft substitute able to aid in the repair of large bone defects.
Vapochromic Behaviour of Polycarbonate Films Doped with a Luminescent Molecular Rotor
We report on vapochromic films suitable for detecting volatile organic compounds (VOCs), based on polycarbonate (PC) doped with 4-(triphenylamino)phthalonitrile (), a fluorescent molecular rotor sensitive to solvent polarity and viscosity. PC films of variable thickness (from 20 up to 80 µm) and containing small amounts of (0.05 wt.%) were prepared and exposed to a saturated atmosphere of different VOCs. /PC films showed a gradual decrease and red-shift of the emission during the exposure to solvents with high polarity index and favourable interaction with the polymer matrix such as THF, CHCl, and acetonitrile. In the case of the most interacting solvents (THF and CHCl), /PC films also showed a fluorescence increase at longer exposure times, as a consequence of an irreversible, solvent-induced crystallization process of the polymeric matrix. The vapochromism of /PC films is rationalized on the basis of alterations of the rotor intramolecular motion upon solvent uptake by PC and polarity effects of the microenvironment. Interestingly, the fluorescence response of the /PC films shows a non-trivial, tuneable dependence on film thickness during the second solvent-exposure stage. The latter effect is attributed to a variable extent of the crystallization process occurring in the PC films. This observation promptly suggests, in turn, an effective procedure to modulate the spectroscopic response in such functionalized polymeric materials through the precise control of the film thickness.
Tungsten-loaded SMP foam nanocomposites with inherent radiopacity and tunable thermo-mechanical properties
Shape memory polymer (SMP) foams have been developed for use in neurovascular occlusion applications. These materials are predominantly polyurethanes that are known for their biocompatibility and tunable properties. However, these polymers inherently lack X-ray visibility, which is a significant challenge for their use as implantable materials. Herein, low density, highly porous shape memory polyurethane foams were developed with tungsten nanoparticles dispersed into the foam matrix, at increasing concentrations, to serve as a radiopaque agent. Utilizing X-ray fluoroscopy sufficient visibility of the foams at small geometries was observed. Thermal characterization of the foams indicated altered thermal response and delayed foam actuation with increasing nanoparticle loading (because of restricted network mobility). Mechanical testing indicated decreased toughness and strength for higher loading because of disruption of the SMP matrix. Overall, filler addition imparted x-ray visibility to the SMP foams and allowed for tuned control of the transition temperature and actuation kinetics for the material.
Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst
An effective route for the synthesis of aliphatic polyesters made from adipic or sebacic acid and alkanediols, using inorganic acid as a catalyst is reported. The monomer composition, reaction time, catalyst type, and reaction conditions were optimized to yield polyesters with weight average molecular weights of 23,000 for adipic acid and 85,000 for sebacic acid-based polyesters. The polymers melt at temperatures of 52-65°C and possess melt viscosity in the range of 5600-19,400cP. This route represents an alternative method for producing aliphatic polyesters for possible use in the preparation of degradable disposable medical supplies.
Progress in the development of interpenetrating polymer network hydrogels
Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in "double network" IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end-linked poly-(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond-reinforced strain-hardening behavior in water and high initial Young's moduli under physiologic buffer conditions through osmotically induced pre-stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non-ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs.