THERMOCHIMICA ACTA

Thermochemical Analysis of Improvised Energetic Materials by Laser-Heating Calorimetry
Nazarian A and Presser C
Thermochemical analysis of six improvised energetic materials was carried out using laser-heating calorimetry to demonstrate the feasibility of this methodology to provide distinctive thermal signatures and information on the material shelf life. The chemicals evaluated were erythritol tetranitrate, hexamethylene triperoxide diamine (HMTD), poor-man's C-4 (blend of potassium chlorate and petroleum jelly), R-salt (represented by 1,3,5-trinitroso-1,3,5-triazinane), triacetone triperoxide (TATP), and urea nitrate. The measurement technique records the temperature rise with time, from which one can estimate the material endothermic/exothermic behavior, energy release rate, and total specific energy release (heating value, enthalpy of explosion), as well as the sample mass rate of change. Measurements were carried out in an inert nitrogen environment at laser heating rates up to 60 K/s with steady-state temperatures reaching about 933 K. Sample initial mass was between 1.0 mg and 4.0 mg. Experiments were carried out with freshly prepared samples, as well as refrigerated samples and those stored at room (laboratory) temperature for three years. Results indicated that the samples reacted rapidly between 0.50 s and 0.75 s, being initiated near the material decomposition temperature. The total specific energy release, using two different thermal-analysis models, was calculated and compared to values available in the literature. One model represents sample reaction and decomposition within the spherical reactor volume, while the second represents reactions emanating from sample in a pan centrally positioned within the sphere; the former model was found to be the more appropriate approach for these faster-reacting energetic materials. The thermal signatures (temperature-time derivatives with temperature) were different for each chemical, a feature that may be important for energetic material identification. The initiation and peak reaction temperatures were found to decrease with increasing initial sample mass. Also, the shelf life for TATP and HMTD was found not to degrade under nonideal conditions after three years.
Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating
Nazarian A and Presser C
Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen MA, Kowalski GJ, Fiering J and Larson D
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier-Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.
Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding
Jones CL, Dickson T, Hayes R and Thomas L
Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van't Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.
Assessing honeybee and wasp thermoregulation and energetics-New insights by combination of flow-through respirometry with infrared thermography
Stabentheiner A, Kovac H, Hetz SK, Käfer H and Stabentheiner G
Endothermic insects like honeybees and some wasps have to cope with an enormous heat loss during foraging because of their small body size in comparison to endotherms like mammals and birds. The enormous costs of thermoregulation call for optimisation. Honeybees and wasps differ in their critical thermal maximum, which enables the bees to kill the wasps by heat. We here demonstrate the benefits of a combined use of body temperature measurement with infrared thermography, and respiratory measurements of energy turnover (O(2) consumption or CO(2) production via flow-through respirometry) to answer questions of insect ecophysiological research, and we describe calibrations to receive accurate results.To assess the question of what foraging honeybees optimise, their body temperature was compared with their energy turnover. Honeybees foraging from an artificial flower with unlimited sucrose flow increased body surface temperature and energy turnover with profitability of foraging (sucrose content of the food; 0.5 or 1.5 mol/L). Costs of thermoregulation, however, were rather independent of ambient temperature (13-30 °C). External heat gain by solar radiation was used to increase body temperature. This optimised foraging energetics by increasing suction speed.In determinations of insect respiratory critical thermal limits, the combined use of respiratory measurements and thermography made possible a more conclusive interpretation of respiratory traces.
Enthalpy of mixing of liquid systems for lead free soldering: Ni-Sb-Sn system
Elmahfoudi A, Fürtauer S, Sabbar A and Flandorfer H
The partial and integral enthalpies of mixing of liquid ternary Ni-Sb-Sn alloys were determined along five sections / = 3:1, / = 1:1, / = 1:3, / = 1:4, and / = 1:4 at 1000 °C in a large compositional range using drop calorimetry techniques. The mixing enthalpy of Ni-Sb alloys was determined at the same temperature and described by a Redlich-Kister polynomial. The other binary data were carefully evaluated from literature values. Our measured ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Toop is given. The entire ternary system shows exothermic values of Δ ranging from approx. -1300 J/mol, the minimum in the Sb-Sn binary system down to approx. -24,500 J/mol towards Ni-Sb. No significant ternary interaction could be deduced from our data.
Van't Hoff global analyses of variable temperature isothermal titration calorimetry data
Freiburger LA, Auclair K and Mittermaier AK
Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, , and enthalpy changes, Δ . A powerful application of this technique involves analyzing the temperature dependences of ITC-derived and Δ values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme.
Thermodynamic properties of liquid Au-Cu-Sn alloys determined from electromotive force measurements
Guo Z, Hindler M, Yuan W and Mikula A
The thermodynamic properties of the ternary Au-Cu-Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au-Cu-Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs-Duhem integration. The ternary interaction parameters were evaluated using the Redlich-Kister-Muggianu polynomial.
The effect of jasplakinolide on the thermodynamic properties of ADP.BeF(x) bound actin filaments
Kardos R, Vig A, Orbán J, Hild G, Nyitrai M and Lőrinczy D
The effect of BeF(x) and a natural toxin (jasplakinolide) was examined on the thermal stability of actin filaments by using differential scanning calorimetry. The phosphate analogue beryllium fluoride shifted the melting temperature of actin filaments (67.4 degrees C) to 83.7 degrees C indicating that the filaments were thermodynamically more stable in their complex with ADP.BeF(x). A similar tendency was observed when the jasplakinolide was used in the absence of BeF(x). When both the ADP.BeF(x) and the jasplakinolide bound to the actin filaments their collective effect was similar to that observed with ADP.BeF(x) or jasplakinolide alone. These results suggested that ADP.BeF(x) and jasplakinolide probably stabilize the actin filaments by similar molecular mechanisms.
Heat capacity and decomposition of rimantadine hydrochloride
Bazyleva A, Paulechka E, Zaitsau DH, Blokhin AV and Kabo GJ
Heat capacities of the antiviral drug rimantadine hydrochloride in the crystalline state were measured by adiabatic calorimetry and differential scanning calorimetry in the temperature range from (7 to 453) K. A broad low-enthalpy solid-state phase anomaly was detected between (170 and 250) K. Thermodynamic functions for crystalline rimantadine hydrochloride were derived. Decomposition of the studied compound was probed by the Knudsen effusion method and thermogravimetry with the support of quantum chemical calculations. The enthalpy of decomposition of rimantadine hydrochloride into the corresponding amine and hydrogen chloride was estimated from those data. The thermodynamic functions of the corresponding amine in the ideal gaseous state, including enthalpy of formation, were obtained using statistical thermodynamics with the necessary molecular parameters computed using quantum chemical methods. The enthalpy of formation of crystalline rimantadine hydrochloride was estimated.