Terrein Exhibits Anti-tumor Activity by Suppressing Angiogenin Expression in Malignant Melanoma Cells
Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms.
Pharmacogenetics of Toxicities Related to Endocrine Treatment in Breast Cancer: A Systematic Review and Meta-analysis
Endocrine therapy is the standard treatment for hormone receptor-positive (HR+) breast cancer (BC). Yet, it is accompanied by treatment-related toxicities, leading to poor treatment adherence, high relapse, and low rates of survival. While pharmacogenomic variants have the potential to guide personalized treatment, their predictive value is inconsistent across published studies.
DNA Methylation in Recurrent Glioblastomas: Increased TEM8 Expression Activates the Src/PI3K/AKT/GSK-3β/B-Catenin Pathway
Glioblastomas (GBM) are infiltrative malignant brain tumors which mostly recur within a year's time following surgical resection and chemo-radiation therapy. Studies on glioblastoma cells following radio-chemotherapy, have been demonstrated to induce trans-differentiation, cellular plasticity, activation of DNA damage response and stemness. As glioblastomas are heterogenous tumors that develop treatment resistance and plasticity, we investigated if there exist genome-wide DNA methylation changes in recurrent tumors.
Desert Hedgehog Down-regulation Mediates Inhibition of Proliferation by γ-Glutamylcyclotransferase Knockdown in Murine Glioblastoma Stem Cells
Glioblastoma is the most frequent type of adult-onset malignant brain tumor and has a very poor prognosis. Glioblastoma stem cells have been shown to be one of the mechanisms by which glioblastoma acquires therapy resistance. Therefore, there is a need to establish novel therapeutic strategies useful for inhibiting this cell population. γ-Glutamylcyclotransferase (GGCT) is an enzyme involved in the synthesis and metabolism of glutathione, which is highly expressed in a wide range of cancer types, including glioblastoma, and inhibition of its expression has been reported to have antitumor effects on various cancer types. The aim of this study was to clarify the function of GGCT in glioblastoma stem cells.
The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory
The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer.
Impact of Hypoxia and the Levels of Transcription Factor HIF-1α and JMJD1A on Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma Cell Lines
This study aimed to assess the impact of hypoxia on epithelial-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC), focusing on the involvement of transcription factors hypoxia inducible factor 1 (HIF-1α) and Jumonji Domain-Containing Protein 1A (JMJD1A).
Serum Exosomes Expressing CD9, CD63 and HER2 From Breast-Cancer Patients Decreased After Surgery of the Primary Tumor: A Potential Biomarker of Tumor Burden
Exosomes are extracellular vesicles produced by both normal and cancer cells. Previous research has demonstrated that circulating exosomes derived from cancer cells may create a niche for future metastasis, distant from the primary tumor. In the present report, circulating exosomes were captured and quantified based on exosome-surface proteins in pre- and post-operative serum of breast cancer patients, focusing on the exosome markers CD9 and CD63, as well as HER2, a therapeutic target for breast cancer.
PIK3CA Mutated Colorectal Cancers Without KRAS, NRAS and BRAF Mutations Possess Common and Potentially Targetable Mutations in Epigenetic Modifiers and DNA Damage Response Genes
Despite therapeutic advancements, metastatic colorectal cancer is usually fatal, necessitating novel approaches based on the molecular pathogenesis to improve outcomes. Some colorectal cancers have no mutations in the extended RAS panel (KRAS, NRAS, BRAF) genes and represent a special subset, which deserves particular therapeutic considerations.
Extensive DNA Damage and Loss of Cell Viability Occur Synergistically With the Combination of Recombinant Methioninase and Paclitaxel on Pancreatic Cancer Cells which Report DNA-Damage Response in Real Time
Methionine restriction selectively arrests cancer cells during the S-phase of the cell cycle. We hypothesized that DNA damage may occur in S-phase in cancer cells during methionine restriction. To determine if this occurs, we used MiaPaCa-2 53BP1-green fluorescent protein (GFP) pancreatic cancer cells, which report GFP fluorescence in real time after DNA-damage response (DDR) in these cells. We also determined whether a chemotherapy drug in combination with methionine restriction increases the rate of DNA damage.
Comparative Proteomics of ccRCC Cell Lines to Identify Kidney Cancer Progression Factors
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, accounting for approximately 75% of kidney cancers. The objective of this study was to identify novel progression markers for ccRCC based on proteomics, with the goal of stage determination and early diagnosis of kidney cancer patients.
Suppressing Expression of SERPINE1/PAI1 Through Activation of GPER1 Reduces Progression of Vulvar Carcinoma
The serine proteinase inhibitor 1 (SERPINE1) gene codes for the plasminogen activator inhibitor 1 (PAI1) protein and is thought to play a tumor supportive role in various cancers. In this work we aimed to uncover the role PAI1 plays in the proliferation, migration, and invasion of vulvar cancer (VC), and define the protein's function as an oncogene or tumor suppressor.
GULP1 as a Downstream Effector of the Estrogen Receptor-β Modulates Cisplatin Sensitivity in Bladder Cancer
Precise molecular mechanisms underlying resistance to cisplatin-based chemotherapy remain unclear, while the activity of estrogen receptor-β (ERβ) has been suggested to be associated with chemosensitivity in urothelial cancer. We aimed to determine if GULP1, an adapter protein known to facilitate phagocytosis, could represent a downstream effector of ERβ and thereby modulate cisplatin sensitivity in bladder cancer.
GD2 in Breast Cancer: A Potential Biomarker and Therapeutic Target
Expression of disialoganglioside GD2 in normal tissues is primarily limited to the central nervous system, peripheral sensory nerve fibers, dermal melanocytes, lymphocytes, and mesenchymal stem cells. Its widespread overexpression in various cancer types allows it to be classified as a tumor-associated antigen with potential diagnostic and therapeutic implications. This article reviews the synthesis pathways of GD2 and its role in cancer cell adhesion, proliferation, and metastasis with a focus on breast cancer. GD2 appears to be overexpressed on the outer membrane of most breast cancer cells and breast cancer stem cells (BCSCs) and is closely linked to epithelial-mesenchymal transition (EMT). GD3 synthase (GD3S) is considered to be the rate-determining step in GD2 synthesis. Clinical studies indicate that GD2 expression is increased in 35-70% of breast cancer samples, with higher levels in triple-negative breast cancer (TNBC). This overexpression correlates with more aggressive tumor features and worse prognosis. Therapeutic targeting of GD2 with monoclonal antibodies (moABs) like dinutuximab and naxitamab has demonstrated anti-cancer activity in preclinical cancer models and human clinical trials against high-risk neuroblastoma reducing tumor growth and enhancing survival. GD2-specific chimeric antigen receptor (CAR) T-cell therapy and GD3S inhibition present other promising therapeutic strategies to improve clinical outcomes. Furthermore, GD2-targeted vaccines are currently being investigated in cancer therapy. This narrative review article underscores the critical role of GD2 in breast cancer pathogenesis and highlights the promising therapeutic opportunities it offers. It advocates for the initiation of clinical trials to further explore the potential of GD2-targeted treatment in combination with standard breast cancer therapies.
P53 Status Influences the Anti-proliferative Effect Induced by IFITM1 Inhibition in Estrogen Receptor-positive Breast Cancer Cells
Interferon-induced trans-membrane protein 1 (IFITM1) is known to be involved in breast cancer progression. We aimed to investigate its role in estrogen receptor (ER)-positive breast cancer cells with wild-type p53 and tamoxifen-resistant breast cancer cells.
Cordycepin Activates Autophagy to Suppress FGF9-induced TM3 Mouse Leydig Progenitor Cell Proliferation
Fibroblast growth factor 9 (FGF9) is a member of the human FGF family known for its pivotal roles in various biological processes, such as cell proliferation, tissue repair, and male sex determination including testis formation. Cordycepin, a bioactive compound found in Cordyceps sinensis, exhibits potent antitumor effects by triggering apoptosis and/or autophagy pathways. Our research has unveiled that FGF9 promotes proliferation and tumorigenesis in MA-10 mouse Leydig tumor cells, as the phenomena are effectively countered by cordycepin through apoptosis induction. Moreover, we have observed FGF9-mediated stimulation of proliferation and tumorigenesis in TM3 mouse Leydig progenitor cells, prompting an investigation into the potential inhibitory effect of cordycepin on TM3 cell proliferation under FGF9 treatment. Hence, we hypothesized that cordycepin induces cell death via apoptosis and/or autophagy in FGF9-treated TM3 cells.
Targeting Bmi1 for Enhancing Anoikis Sensitivity and Inhibiting Metastasis in Colorectal Cancer
Patients diagnosed with advanced metastatic colorectal cancer (CRC) confront a bleak prognosis characterized by low survival rates. Anoikis, the programmed apoptosis resistance exhibited by metastatic cancer cells, is a crucial factor in this scenario.
SF3B4 Regulates Cellular Senescence and Suppresses Therapy-induced Senescence of Cancer Cells
Cellular senescence is a state in which cells permanently exit the cell cycle, preventing tumor growth, but it can also contribute to aging and chronic inflammation. Senescence induced by cancer therapies, known as therapy-induced senescence (TIS), halts cancer cell proliferation and prevents metastasis. TIS has been investigated as an important therapeutic approach that could minimize cytotoxicity effects. This study aimed to elucidate the role of splicing factor 3B subunit 4 (SF3B4) in cellular senescence and TIS in cancer cells.
Worse Wilms' Tumor Outcomes Associated With Chemical Complementarity for Multiple T-Cell Receptor CDR3-CMV Epitope Pairs
Wilms' tumors are pediatric renal tumors that generally have a good prognosis and outcomes. Viral illnesses have been linked to development of neoplasms and should be considered as a factor that could modulate overall survival.
Impacts of Matrix Metalloproteinase-2 Promoter Genotypes on Breast Cancer Risk
Matrix metalloproteinase-2 (MMP-2) has been implicated in the pathogenesis of breast cancer (BC). However, there is limited research on the role of MMP-2 genotypes in BC risk. This study aimed to investigate the associations between two MMP-2 promoter polymorphisms, rs243865 and rs2285053, and BC risk.
Induction of the DNA-Repair Gene POLQ only in BRCA1-mutant Breast-Cancer Cells by Methionine Restriction
BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction.
Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines
Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19.