Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration
Significant efforts have been made recently in the application of high-resolution remote sensing imagery (i.e., sub-meter) captured by unmanned aerial vehicles (UAVs) for precision agricultural applications for high-value crops such as wine grapes. However, at such high resolution, shadows will appear in the optical imagery effectively reducing the reflectance and emission signal received by imaging sensors. To date, research that evaluates procedures to identify the occurrence of shadows in imagery produced by UAVs is limited. In this study, the performance of four different shadow detection methods used in satellite imagery was evaluated for high-resolution UAV imagery collected over a California vineyard during the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) field campaigns. The performance of the shadow detection methods was compared and impacts of shadowed areas on the normalized difference vegetation index (NDVI) and estimated evapotranspiration (ET) using the Two-Source Energy Balance (TSEB) model are presented. The results indicated that two of the shadow detection methods, the supervised classification and index-based methods, had better performance than two other methods. Furthermore, assessment of shadowed pixels in the vine canopy led to significant differences in the calculated NDVI and ET in areas affected by shadows in the high-resolution imagery. Shadows are shown to have the greatest impact on modeled soil heat flux, while net radiation and sensible heat flux are less affected. Shadows also have an impact on the modeled Bowen ratio (ratio of sensible to latent heat) which can be used as an indicator of vine stress level.
Intermittency of water vapor fluxes from vineyards during light wind and convective conditions
Vineyards in many semi-arid regions globally face limited water resources. Monitoring évapotranspiration (ET) of vineyards is critical for water resource management, but remains difficult due to the complex biophysics of the surfaces. Both measurement and modeling approaches for estimating turbulent water vapor transport rely on implicit assumptions that exchanges occur in a reasonably regular fashion over the time scales generally used for averaging. However, heterogeneous vegetation in semi-arid climates, such as many vineyards, presents inherent factors, including canopy row/row space structure and frequent periods of light wind, unstable conditions, that can create episodic transport characteristics. Eddy covariance data were collected above and within the canopy of two vineyards in the Central Valley of California during the Grape Remote sensing Atmospheric Profile & Evapotranspiration experiment (GRAPEX). The goal was to document and quantify the existence of intermittent turbulence transport of water vapor, and associated episodic canopy venting. These effects were found to correlate with periods light winds and highly unstable/convective conditions. Power and cross-spectra for intermittent periods documented enhancement of low-frequency water vapor exchange events compared to more steady periods, and diminished time scale correlation between humidity within the canopy and above the canopy. Analyses show that intermittent cases can necessitate longer flux-averaging periods (up to 2 h) than more steady conditions. Episodic exchange events were isolated and summed to determine their relative contribution to the overall water vapor flux. Since light wind, unstable conditions are relatively common in many arid vineyard regions, these findings have implications for mechanistic ET models that rely on time-averaged vertical gradients, which implies reasonably steady transport.
Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery
The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from an unmanned aerial vehicle were collected over vineyards in California, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment and used in four different TSEB approaches to estimate the component soil and canopy temperatures, and ET partitioning between soil and canopy. Two approaches rely on the use of composite , and assume initially that the canopy transpires at the Priestley-Taylor potential rate. The other two algorithms are based on the contextual relationship between optical and thermal imagery partition into soil and canopy component temperatures, which are then used to drive the TSEB without requiring a priori assumptions regarding initial canopy transpiration rate. The results showed that a simple contextual algorithm based on the inverse relationship of a vegetation index and to derive soil and canopy temperatures yielded the closest agreement with flux tower measurements. The utility in very high-resolution remote-sensing data for estimating ET and E and T partitioning at the canopy level is also discussed.
Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS
Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed. We illustrate how meteorological data inputs can introduce biases that vary in space and at seasonal timescales, but that can persist from year to year. We also observe that errors in SIMS estimates of land surface conductance can have a particularly strong dependence on time of year. Overall, meteorological inputs introduced RMSE of 0.33-0.65 mm/day (7-27%) across sites, while SIMS introduced RMSE of 0.55-0.83 mm/day (19-24%). The relative error contribution from meteorological inputs versus SIMS varied across sites; errors from SIMS were larger at one site, errors from meteorological inputs were larger at a second site, and the error contributions were of equal magnitude at the third site. The similar magnitude of error contributions is significant given that many satellite-driven ET models differ in their approaches to estimating land surface conductance, but often rely on similar or identical meteorological forcing data. The finding is particularly notable given that SIMS makes assumptions about the land surface (no soil evaporation or plant water stress) that do not always hold in practice. The results of this study show that improving SIMS by eliminating these assumptions would result in meteorological inputs dominating the error budget of the model on the whole. This finding underscores the need for further work on characterizing spatial uncertainty in the meteorological forcing of ET.
Improving the spatiotemporal resolution of remotely sensed ET information for water management through Landsat, Sentinel-2, ECOSTRESS and VIIRS data fusion
Robust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors. This study investigates the efficacy of a data fusion method for combining information from multiple medium-resolution sensors toward generating high spatiotemporal resolution ET products for water management. TIR data from Landsat and ECOSTRESS (both at ~ 100-m native resolution), and VIIRS (375-m native) are sharpened to a common 30-m grid using surface reflectance data from the Harmonized Landsat-Sentinel dataset. Periodic 30-m ET retrievals from these combined thermal data sources are fused with daily retrievals from unsharpened VIIRS to generate daily, 30-m ET image timeseries. The accuracy of this mapping method is tested over several irrigated cropping systems in the Central Valley of California in comparison with flux tower observations, including measurements over irrigated vineyards collected in the GRAPEX campaign. Results demonstrate the operational value added by the augmented TIR sensor suite compared to Landsat alone, in terms of capturing daily ET variability and reduced latency for real-time applications. The method also provides means for incorporating new sources of imaging from future planned thermal missions, further improving our ability to map rapid changes in crop water use at field scales.
Evaluation of satellite Leaf Area Index in California vineyards for improving water use estimation
Remote sensing estimation of evapotranspiration (ET) directly quantifies plant water consumption and provides essential information for irrigation scheduling, which is a pressing need for California vineyards as extreme droughts become more frequent. Many ET models take satellite-derived Leaf Area Index (LAI) as a major input, but how uncertainties of LAI estimations propagate to ET and the partitioning between evaporation and transpiration is poorly understood. Here we assessed six satellite-based LAI estimation approaches using Landsat and Sentinel-2 images against ground measurements from four vineyards in California and evaluated ET sensitivity to LAI in the thermal-based two-source energy balance (TSEB) model. We found that radiative transfer modeling-based approaches predicted low to medium LAI well, but they significantly underestimated high LAI in highly clumped vine canopies (RMSE ~ 0.97 to 1.27). Cubist regression models trained with ground LAI measurements from all vineyards achieved high accuracy (RMSE ~ 0.3 to 0.48), but these empirical models did not generalize well between sites. Red edge bands and the related vegetation index (VI) from the Sentinel-2 satellite contain complementary information of LAI to VIs based on near-infrared and red bands. TSEB ET was more sensitive to positive LAI biases than negative ones. Positive LAI errors of 50% resulted in up to 50% changes in ET, while negative biases of 50% in LAI caused less than 10% deviations in ET. However, even when ET changes were minimal, negative LAI errors of 50% led to up to a 40% reduction in modeled transpiration, as soil evaporation and plant transpiration responded to LAI change divergently. These findings call for careful consideration of satellite LAI uncertainties for ET modeling, especially for the partitioning of water loss between vine and soil or cover crop for effective vineyard irrigation management.
Inter-annual variability of land surface fluxes across vineyards: the role of climate, phenology, and irrigation management
Irrigation and other agricultural management practices play a key role in land surface fluxes and their interactions with atmospheric processes. California's Central Valley agricultural productivity is strongly linked to water availability associated with conveyance infrastructure and groundwater, but greater scrutiny over agricultural water use requires better practices particularly during extended and severe drought conditions. The future of irrigated agriculture in California is expected to be characterized neither by perpetual scarcity nor by widespread abundance. Thus, further advancing irrigation technologies and improving management practices will be key for California's agriculture sustainability. In this study, we present micrometeorological observations from the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. Daily, seasonal, and inter-seasonal surface flux patterns and relationships across five vineyards over three distinct California wine production regions were investigated. Vineyard actual evapotranspiration showed significant differences at the sub-daily and daily scale when comparisons across wine production regions and varieties were performed. Water use in vineyards in the Central Valley was about 70% greater in comparison to the vineyards at the North Coast area due to canopy size, atmospheric demand, and irrigation inputs. Inter-annual variability of surface fluxes was also significant, even though, overall weather conditions (i.e., air temperature, vapor pressure deficit, wind speed, and solar radiation) were not significantly different. Thus, not only irrigation but also other management practices played a key role in seasonal water use, and given these differences, we conclude that further advancing ground-based techniques to quantify crop water use at an operational scale will be key to facing California's agriculture present and future water challenges.
Application of a remote-sensing three-source energy balance model to improve evapotranspiration partitioning in vineyards
Improved accuracy of evapotranspiration (ET) estimation, including its partitioning between transpiration (T) and surface evaporation (E), is key to monitor agricultural water use in vineyards, especially to enhance water use efficiency in semi-arid regions such as California, USA. Remote-sensing methods have shown great utility in retrieving ET from surface energy balance models based on thermal infrared data. Notably, the two-source energy balance (TSEB) has been widely and robustly applied in numerous landscapes, including vineyards. However, vineyards add an additional complexity where the landscape is essentially made up of two distinct zones: the grapevine and the interrow, which is often seasonally covered by an herbaceous cover crop. Therefore, it becomes more complex to disentangle the various contributions of the different vegetation elements to total ET, especially through TSEB, which assumes a single vegetation source over a soil layer. As such, a remote-sensing-based three-source energy balance (3SEB) model, which essentially adds a vegetation source to TSEB, was applied in an experimental vineyard located in California's Central Valley to investigate whether it improves the depiction of the grapevine-interrow system. The model was applied in four different blocks in 2019 and 2020, where each block had an eddy-covariance (EC) tower collecting continuous flux, radiometric, and meteorological measurements. 3SEB's latent and sensible heat flux retrievals were accurate with an overall RMSD ~ 50 W/m compared to EC measurements. 3SEB improved upon TSEB simulations, with the largest differences being concentrated in the spring season, when there is greater mixing between grapevine foliage and the cover crop. Additionally, 3SEB's modeled ET partitioning (T/ET) compared well against an EC T/ET retrieval method, being only slightly underestimated. Overall, these promising results indicate 3SEB can be of great utility to vineyard irrigation management, especially to improve T/ET estimations and to quantify the contribution of the cover crop to ET. Improved knowledge of T/ET can enhance grapevine water stress detection to support irrigation and water resource management.
Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data
Accurate estimations of actual crop evapotranspiration are of utmost importance to evaluate crop water requirements and to optimize water use efficiency. At this aim, coupling simple agro-hydrological models, such as the well-known FAO-56 model, with remote observations of the land surface could represent an easy-to-use tool to identify biophysical parameters of vegetation, such as the crop coefficient K under the actual field conditions and to estimate actual crop evapotranspiration. This paper intends, therefore, to propose an operational procedure to evaluate the spatio-temporal variability of K in a citrus orchard characterized by the sporadic presence of ground weeds, based on micro-meteorological measurements collected on-ground and vegetation indices (VIs) retrieved by the Sentinel-2 sensors. A non-linear K(VIs) relationship was identified after assuming that the sum of two VIs, such as the normalized difference vegetation index, NDVI, and the normalized difference water index, NDWI, is suitable to represent the spatio-temporal dynamics of the investigated environment, characterized by sparse vegetation and the sporadic presence of spontaneous but transpiring soil weeds, typical of winter seasons and/or periods following events wetting the soil surface. The K values obtained in each cell of the Sentinel-2 grid (10 m) were then used as input of the spatially distributed FAO-56 model to estimate the variability of actual evapotranspiration (ET) and the other terms of water balance. The performance of the proposed procedure was finally evaluated by comparing the estimated average soil water content and actual crop evapotranspiration with the corresponding ones measured on-ground. The application of the FAO-56 model indicated that the estimated ET were characterized by root-mean-square-error, RMSE, and mean bias-error, MBE, of 0.48 and -0.13 mm d respectively, while the estimated soil water contents, SWC, were characterized by RMSE equal to 0.01 cm cm and the absence of bias, then confirming that the suggested procedure can produce highly accurate results in terms of dynamics of soil water content and actual crop evapotranspiration under the investigated field conditions.