A perturbation method for evaluating the magnetic field induced from an arbitrary, asymmetric ocean world analytically
Magnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity. In this work, we use a perturbation method to derive a semi-analytic result capable of determining the induced magnetic moments for an arbitrary layered body, provided each layer is nearly spherical. Crucially, we find that degree-2 tidal deformation results in changes to the induced dipole moments. We demonstrate application of our results to models of plausible asymmetry from the literature within the oceans of Europa and Miranda and the ionospheres of Callisto and Triton. For the models we consider, we find that in the asymmetric case, the induced magnetic field differs by more than 2 nT near the surface of Europa, 0.25-0.5 nT at 1 above Miranda and Triton, and is essentially unchanged for Callisto. For Miranda and Triton, this difference is as much as 20%-30% of the induced field magnitude. If measurements near the moons can be made precisely to better than a few tenths of a nT, these values may be used by future spacecraft investigations to characterize asymmetry within the interior of icy moons.
The interaction of deep convection with the general circulation in Titan's atmosphere. Part 2: Impacts on the climate
The impact of methane convection on the circulation of Titan is investigated in the Titan Atmospheric Model (TAM), using a simplified Betts-Miller (SBM) moist convection parameterization scheme. We vary the reference relative humidity ( ) and relaxation timescale of convection () parameters of the SBM scheme. Titan's atmosphere is mostly insensitive to changes in , but convective instability and precipitation are highly impacted by changes in . Convection changes behavior from occurring in infrequent (<1 per Titan year), intense events at summer solstice that quickly encompass the entire globe at low to near-continuous precipitation at the poles during summer at high (>85%). The intermediate regime ( =70-80%) consists of frequent events (~10 per Titan year) of moderate intensity that are limited in meridional extent to their respective hemisphere. Using results from the Titan Regional Atmospheric Modeling System (TRAMS) and observations, we tune the parameters of the SBM parameterization with optimum values of RH=80% and =28800 s. We present a simulated decadal climatology that qualitatively matches observations of Titan's humidity and cloud activity and generally resembles previous results with TAM. Comparing this simulation to one without moist convection demonstrates that convection strengthens the meridional circulation, warms the mid-levels and cools the surface at the poles, and magnifies zonal-mean global moisture anomalies.
The interaction of deep convection with the general circulation in Titan's atmosphere. Part 1: Cloud Resolving Simulations
The deep convective cloud-environment feedback loop is likely important to Titan's global methane, energy, and momentum cycles, just as it is for Earth's global water, energy, and momentum budgets. General circulation models of Titan's atmosphere are unable to explicitly simulate deep convection and must instead parameterize the impact of this important subgrid-scale phenomenon on the model-resolved atmospheric state. The goal of this study is to better quantify through cloud resolving modeling the effects of deep convective methane storms on their environment and to feed that information forward to improve parameterizations in global models. Dozens of atmospheric profiles unstable with respect to deep moist convection are extracted from the global Titan Atmospheric Model (TAM) and used to initialize the cloud-resolving Titan Regional Atmospheric Modeling System (TRAMS). Mean profiles of heating/cooling and moistening/drying of the large-scale environment in TRAMS indicate that Titan's deep convection forces the environment in a manner analogous to Earth: Large-scale subsidence of the environmental air warms and dries the environment, but clouds can also moisten the environment through the detrainment and evaporation of condensate near cloud top. Relative humidity profiles and characteristic convective time scales are derived to guide the tuning of the deep convective parameterization implemented in TAM, as described in a companion paper. The triggering of convection, the dry convective mixing of the planetary boundary layer, and the entrainment of environmental air into rising air parcels are found to be critical to determining whether a deep convective cloud will form. Only profiles with relatively large convective available potential energy (CAPE) and well mixed planetary boundary layers with high relative humidity were found to produce storms. Environments with low level thermal inversions and planetary boundary layers with low relative humidity or rapidly decreasing moisture with height failed to generate deep convection in TRAMS despite positive CAPE.
Mars Perihelion Cloud Trails as revealed by MARCI: Mesoscale Topographically Focussed Updrafts and Gravity Wave Forcing of High Altitude Clouds
Daily, global wide angle imaging of Mars clouds in MARCI (MARs Color Imager, (Malin et al., 2008)) ultraviolet and visible bands reveals the spatial/seasonal distributions and physical characteristics of perihelion cloud trails (PCT); a class of high altitude (40-50 km), horizontally extended (200-1000 km, trending W to WSW) water ice clouds formed over specific southern low-to-mid latitude (5S-40S), mesoscale (~50 km) locations during the Mars perihelion, southern summer season. PCT were first reported in association with rim regions of Valles Marineris (Clancy et al., 2009). The current study employs MARCI 2007-2011 imaging to sample the broader distributions and properties of PCT; and indicates several distinct locations of peak occurrences, including SW Arsia Mons, elevated regions of Syria, Solis, and Thaumasia Planitia, along Valles Marineris margins, and the NE rim of Hellas Basin. PCT are present over Mars solar longitudes ( ) of 210-310°, in late morning to mid afternoon hours (10am-3pm), and are among the brightest and most distinctive clouds exhibited during the perihelion portion of the Mars orbit. Their locations (i.e., eastern margin origins) correspond to strong local elevation gradients, and their timing to peak solar heating conditions (perihelion, subsolar latitudes and midday local times). They occur approximately on a daily basis among all locations identified (i.e., not daily at a single location). Based on cloud surface shadow analyses, PCT form at 40-50 km aeroid altitudes, where water vapor is generally at near-saturation conditions in this perihelion period (e.g. Millour et al., 2014). They exhibited notable absences during periods of planet encircling and regional dust storm activity in 2007 and 2009, respectively, presumably due to reduced water saturation conditions above 35-40 km altitudes associated with increased dust heating over the vertically extended atmosphere (e.g., Neary et al., 2019). PCT exhibit smaller particle sizes (R =0.2-0.5m) than typically exhibited in the lower atmosphere, and incorporate significant fractions of available water vapor at these altitudes. PCT ice particles are inferred to form continuously (over ~4 hours) at their PCT eastern origins, associated with localized updrafts, and are entrained in upper level zonal/meridional winds (towards W or WSW with ~50 m/sec speeds at 40-50 km altitudes) to create long, linear cloud trails. PCT cloud formation is apparently forced in the lower atmosphere (≤10-15 km) by strong updrafts associated with distinctive topographic gradients, such as simulated in mesoscale studies (e.g., Tyler and Barnes, 2015) and indicated by the surface-specific PCT locations. These lower scale height updrafts are proposed to generate vertically propagating gravity waves (GW), leading to PCT formation above ~40 km altitudes where water vapor saturation conditions promote vigorous cloud ice formation. Recent mapping of GW amplitudes at ~25 km altitudes, from Mars Climate Sounder 15 m radiance variations (Heavens et al., 2020), in fact demonstrates close correspondences to the detailed spatial distributions of observed PCT, relative to other potential factors such as surface albedo and surface elevation (or related boundary layer depths).
Evidence for dielectric breakdown weathering on the Moon
Soil on the Moon is darkened by space weathering, a process generally assumed to be dominated by the solar wind and/or micrometeoroid impacts. Recent work, however, predicts that another process darkens the soil: large solar energetic particle events may cause dielectric breakdown (or "sparking"), melting and vaporizing soil at a rate comparable to that of micrometeoroids. Unlike the solar wind and/or micrometeoroids, a combination of dielectric breakdown and micrometeoroid weathering can explain how the reflectance of the lunar maria varies with latitude at 750 and 1064 nm, and this combination provides a reasonable mechanism to explain how magnetic anomalies form prominent swirls in the maria. Consequently, space weathering in the lunar maria seems to be dominated by micrometeoroid impacts and dielectric breakdown.
Baroclinic waves in the northern hemisphere of Mars as observed by the MRO Mars Climate Sounder and the MGS Thermal Emission Spectrometer
The climatology of baroclinic waves in the northern hemisphere of Mars is investigated through analysis of observations by the infrared sounders on Mars Reconnaissance Orbiter (MRO) and Mars Global Surveyor (MGS). We focus on the lowest scale height above the surface, where the waves have a large impact on the Martian dust cycle. Profiles retrieved by the MRO Mars Climate Sounder (MCS) rarely reach the lower atmosphere at the season and location of interest. To fill this gap, we turn to observations in the MCS B1 channel (32 microns) when the instrument is viewing the surface. The signature of baroclinic waves appears in these data because of dust-related emission from the lower atmosphere and wave-induced variations of surface temperature. We supplement the MCS data with measurements of temperature at the 610-Pa pressure level from the MGS Thermal Emission Spectrometer (TES). Both data sets provide systematic coverage in latitude and longitude at two local times. Characteristics of baroclinic waves are derived through analysis of observations with a combined duration of about 8 Mars years. Basic results include least-squares solutions for wave amplitude and period at zonal wavenumber 1-3; the resolution is 4° in latitude and 14 solar days in time of observation. There is a strong similarity between the baroclinic waves observed by MCS and TES, which confirms the sensitivity of the MCS B1 channel to wave activity at pressures near 610 Pa. In all 8 Mars years, the baroclinic waves exhibit periodic transitions among modes with different zonal wavenumbers and a distinctive solstitial pause. Although the weather in each Mars year is unique in some respects, a composite of results from all years reveals a well-defined wave climatology. At each zonal wavenumber, large amplitudes are restricted to a pair of seasonal windows positioned symmetrically about the winter solstice. The wave-2 mode is strongest in early autumn and near the vernal equinox, whereas wave 3 is the dominant mode in mid-autumn and mid-winter, immediately before and after the solstitial pause. The interaction between baroclinic waves and dust storms is investigated through comparisons with spacecraft measurements of dust opacity. A strong wave-3 mode is often present during the initial growth phase of large, seasonal dust storms, which reflects the importance of wave-generated frontal dust storms in triggering these events. The wave-3 amplitude then decreases rapidly as the dust storm evolves; this occurs routinely in all Mars years considered here in connection with both mid-autumn "A" storms and mid-winter "C" storms. In some years A-storm suppression of the wave-3 mode marks the beginning of the solstitial pause. These results provide a basis for testing and development of Mars General Circulation Models as well as context for interpreting contemporaneous observations, such as spacecraft images of frontal and flushing dust storms.
Atmospheric response to high-resolution topographical and radiative forcings in a general circulation model of Venus: Time-mean structures of waves and variances
Thermal tides, stationary waves, and general circulation are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography, based on time average analysis. The simulated wind and static stability are very similar to the observed ones (e.g., Horinouchi et al., 2018; Ando et al., 2020). The simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m s around the cloud-heating maximum (~65 km). The zonal-flow acceleration rates of 0.2-0.5 m s Earth day are produced by both horizontal and vertical momentum fluxes at low latitudes. In the GCM simulation, strong solar heating above the cloud top (>69 km) and infrared heating around the cloud bottom (~50 km) modify the vertical structures of thermal tides and their vertical momentum fluxes, which accelerate zonal flow at 10 Pa (~75 km) and 10 Pa (~65 km) at the equator and around 10 Pa at high latitudes. Below and in the cloud layer, surface topography weakens the zonal-mean zonal flow over the Aphrodite Terra and Maxwell Montes, whereas it enhances the zonal flow in the southern polar region. The high-resolution topography produces stationary fine-scale bow structures at the cloud top and locally modifies the variances in the geographical coordinates (i.e., the activity of unsteady wave components). Over the high mountains, vertical spikes of the vertical wind variance are found, indicating penetrative plumes and gravity waves. Negative momentum flux is also locally enhanced at the cloud top over the equatorial high mountains. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the nightside than on the dayside at the cloud top. Strong dependences of the eddy heat and momentum fluxes on local time are predominant. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves.
Variations in the radiophysical properties of tesserae and mountain belts on Venus: Classification and mineralogical trends
Numerous studies show that major Venus highlands display anomalously high radar reflectivity and low radar emissivity relative to the planetary average. This is thought to be the result of the formation of minerals having high dielectric constants via weathering reactions occurring between the surface and the deep atmosphere in these elevated terrains, where temperatures are lower. These reactions are a function of rock composition, atmospheric composition, and degree of weathering, or age. Here, we examine the Magellan radar emissivity, altimetry and backscatter data for all mapped tesserae and mountain belts on Venus. We characterize and classify each contiguous highland according to its pattern of the variation of radar emissivity with increasing altitude. The highlands can be assigned to 7 distinct patterns of emissivity that correspond to at least 2 discrete types of mineralogy based on the altitude (and temperature) of the emissivity changes from the global average (excursions). The majority of the emissivity changes occur at altitudes above 6053 km (temperature below 726 K). The emissivity signature of the major tesserae of Aphrodite Terra, Beta Regio and Phoebe Regio are consistent with the presence of ferroelectric minerals in their rocks (Curie temperatures of ~700-720 K). Fortuna tesserae and the mountains belts (Maxwell, Freyja, Akna and Danu montes) in Ishtar Terra are consistent with the presence of semiconductor minerals. Some tesserae in Ishtar Terra (Clotho, Itzpapatotl and Jyestha tesserae) lie at altitudes over 6055 but lack the emissivity excursions seen in Fortuna tesserae and the mountains at same altitudes and thus may represent a third type of tessera composition. Finally, the spatial distribution of radar emissivity classes correlates to different geologic settings which may reflect differences in the mantle dynamics. Alternatively, this variability could be ascribed to changes in the atmospheric conditions.
Induced magnetic moments from a nearly spherical ocean
The five largest planets all have strong intrinsic magnetic fields that interact with their satellites, many of which contain electrically conducting materials on global scales. Conducting bodies exposed to time-varying magnetic fields induce secondary magnetic fields from movement of eddy currents. In the case of spherically symmetric conducting bodies, matching magnetic solutions at the boundary results in relatively simple relations between the excitation field and the induced field. In this work, we determine the more complicated induced magnetic field from a near-spherical conductor, where the outer boundary is expanded in spherical harmonics. Under the approximations that the excitation field is uniform at a single frequency, the product of wavenumber and radius for the body is large, and the average radius of the body is large compared to the perturbation from spherical symmetry, we find that each spherical harmonic in the shape expansion induces discrete magnetic moments that are independent from the other harmonics in the expansion. That is, simple superposition applies to the magnetic moments induced by each perturbation harmonic. We present a table of the magnetic moments induced by each spherical harmonic up to degree 2 in the perturbed shape. We also present a simple formula by which the induced magnetic field may be evaluated for any arbitrary shape described by expanding the radius of the conducting body in spherical harmonics. Unlike the Earth, many moons in the Solar System are tidally locked to their parent bodies, and many also contain saline, subsurface oceans. Conductive material in these moons is therefore expected to be non-spherical. Accounting for the boundary shape of Europa's ocean will be critical for interpretation of magnetic measurements near the moon, where the effects of quadrupole-and-higher magnetic moments will be most apparent. The results of this work permit magnetic studies considering non-spherical oceans of satellites for the first time.
Ricochets on Asteroids: Experimental study of low velocity grazing impacts into granular media
Spin off events and impacts can eject boulders from an asteroid surface and rubble pile asteroids can accumulate from debris following a collision between large asteroids. These processes produce a population of gravitational bound objects in orbit that can impact an asteroid surface at low velocity and with a distribution of impact angles. We present laboratory experiments of low velocity spherical projectiles into a fine granular medium, sand. We delineate velocity and impact angles giving ricochets, those giving projectiles that roll-out from the impact crater and those that stop within their impact crater. With high speed camera images and fluorescent markers on the projectiles we track spin and projectile trajectories during impact. We find that the projectile only reaches a rolling without slipping condition well after the marble has reached peak penetration depth. The required friction coefficient during the penetration phase of impact is 4-5 times lower than that of the sand suggesting that the sand is fluidized near the projectile surface during penetration. We find that the critical grazing impact critical angle dividing ricochets from roll-outs, increases with increasing impact velocity. The critical angles for ricochet and for roll-out as a function of velocity can be matched by an empirical model during the rebound phase that balances a lift force against gravity. We estimate constraints on projectile radius, velocity and impact angle that would allow projectiles on asteroids to ricochet or roll away from impact, finally coming to rest distant from their initial impact sites.
Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars
Heterolithic, boulder-containing, pebble-strewn surfaces occur along the lower slopes of Aeolis Mons ("Mt. Sharp") in Gale crater, Mars. They were observed in HiRISE images acquired from orbit prior to the landing of the Curiosity rover. The rover was used to investigate three of these units named Blackfoot, Brandberg, and Bimbe between sols 1099 and 1410. These unconsolidated units overlie the lower Murray formation that forms the base of Mt. Sharp, and consist of pebbles, cobbles and boulders. Blackfoot also overlies portions of the Stimson formation, which consists of eolian sandstone that is understood to significantly postdate the dominantly lacustrine deposition of the Murray formation. Blackfoot is elliptical in shape (62 × 26 m), while Brandberg is nearly circular (50 × 55 m), and Bimbe is irregular in shape, covering about ten times the area of the other two. The largest boulders are 1.5-2.5 m in size and are interpreted to be sandstones. As seen from orbit, some boulders are light-toned and others are dark-toned. Rover-based observations show that both have the same gray appearance from the ground and their apparently different albedos in orbital observations result from relatively flat sky-facing surfaces. Chemical observations show that two clasts of fine sandstone at Bimbe have similar compositions and morphologies to nine ChemCam targets observed early in the mission, near Yellowknife Bay, including the Bathurst Inlet outcrop, and to at least one target (Pyramid Hills, Sol 692) and possibly a cap rock unit just north of Hidden Valley, locations that are several kilometers apart in distance and tens of meters in elevation. These findings may suggest the earlier existence of draping strata, like the Stimson formation, that would have overlain the current surface from Bimbe to Yellowknife Bay. Compositionally these extinct strata could be related to the Siccar Point group to which the Stimson formation belongs. Dark, massive sandstone blocks at Bimbe are chemically distinct from blocks of similar morphology at Bradbury Rise, except for a single float block, Oscar (Sol 516). Conglomerates observed along a low, sinuous ridge at Bimbe consist of matrix and clasts with compositions similar to the Stimson formation, suggesting that stream beds likely existed nearly contemporaneously with the dunes that eventually formed the Stimson formation, or that they had the same source material. In either case, they represent a later pulse of fluvial activity relative to the lakes associated with the Murray formation. These three units may be local remnants of infilled impact craters (especially circular-shaped Brandberg), decayed buttes, patches of unconsolidated fluvial deposits, or residual mass-movement debris. Their incorporation of Stimson and Murray rocks, the lack of lithification, and appearance of being erosional remnants suggest that they record erosion and deposition events that post-date the exposure of the Stimson formation.
Bolometric Bond Albedo and Thermal Inertia Maps of Mimas
In 2011 a thermally anomalous region was discovered on Mimas, Saturn's innermost major icy satellite (Howett et al., 2011). The anomalous region is a lens-like shape located at low latitudes on Mimas' leading hemisphere. It manifests as a region with warmer nighttime temperatures, and cooler daytime ones than its surroundings. The thermally anomalous region is spatially correlated with a darkening in Mimas' IR/UV surface color (Schenk et al. 2011) and the region preferentially bombarded by high-energy electrons (Paranicas et al., 2012, 2014; Nordheim et al., 2017). We use data from Cassini's Composite Infrared Spectrometer (CIRS) to map Mimas' surface temperatures and its thermophysical properties. This provides a dramatic improvement on the work in Howett et al. (2011), where the values were determined at only two regions on Mimas (one inside, and another outside of the anomalous region). We use all spatially-resolved scans made by CIRS' focal plane 3 (FP3, 600 to 1100 cm) of Mimas' surface, which are largely daytime observations but do include one nighttime one. The resulting temperature maps confirm the presence and location of Mimas' previously discovered thermally anomalous region. No other thermally anomalous regions were discovered, although we note that the surface coverage is incomplete on Mimas' leading and anti-Saturn hemisphere. The thermal inertia map confirms that the anomalous region has a notably higher thermal inertia than its surroundings: 98±42 J m K s inside of the anomaly, compared to 34±32 J m K s outside. The albedo inside and outside of the anomalous region agrees within their uncertainty: 0.45±0.08 inside compared to 0.41±0.07 outside the anomaly. Interestingly the albedo appears brighter inside the anomaly region, which may not be surprising given this region does appear brighter at some UV wavelengths (0.338 μm, see Schenk et al., 2011). However, this result should be treated with caution because, as previously stated, statistically the albedo of these two regions is the same when their uncertainties are considered. These thermal inertia and albedo values determined here are consistent with those found by Howett et al. (2011), who determined the thermal inertia inside the anomaly to be 66±23 J m K s and <16 J m K s outside, with albedos that varied from 0.49 to 0.70.
An Aeolian Grainflow Model for Martian Recurring Slope Lineae
Recurring Slope Lineae (RSL) on Mars have been enigmatic since their discovery; their behavior resembles a seeping liquid but sources of water remain puzzling. This work demonstrates that the properties of RSL are consistent with observed behaviors of Martian and terrestrial aeolian processes. Specifically, RSL are well-explained as flows of sand that remove a thin coating of dust. Observed RSL properties are supportive of or consistent with this model, which requires no liquid water or other exotic processes, but rather indicates seasonal aeolian behavior. These settings and behaviors resemble features observed by rovers and also explain the occurrence of many slope lineae on Mars that do not meet the strict definition of RSL. This indicates that RSL can be explained simply as aeolian features. Other processes may add complexities just as they could modify the behavior of any sand dune.
Low radar emissivity signatures on Venus volcanoes and coronae: New insights on relative composition and age
Multiple studies reveal that most of Venus highlands exhibit anomalously high radar reflectivity and low radar emissivity relative to the lowlands. This phenomenon is thought to be the result of atmosphere-surface interactions in the highlands, due to lower temperatures. These reactions are a function of rock composition, atmospheric composition, and degree of weathering. We examine the Magellan radar emissivity, altimetry and SAR data for all major volcanoes and coronae on Venus. We characterize and classify edifices according to the pattern of the variation of radar emissivity with altitude. The volcanic highlands can be classified into 7 distinct patterns of emissivity that correspond to at least 3 discrete types of mineralogy based on the altitude (temperature) of the emissivity anomalies. The majority of emissivity anomalies support the hypothesis of a weathering phenomenon at high altitude (6053 km), but we also find strong emissivity anomalies at lower altitudes that correspond spatially to individual lava flows, indicating variations in mineralogy within an evolving volcanic system. The emissivity signature of tallest volcanoes on Venus are consistent with the presence of ferroelectric minerals in their rocks, while volcanic edifices in western Ishtar Terra and eastern Aphrodite Terra are consistent with the presence of semiconductor minerals. Sapas Mons and Pavlova Corona are also consistent with ferroelectrics, but at a different Curie temperature than the other volcanoes in Atla Regio. The spatial distribution of radar emissivity classes correlates to different geologic settings indicating that different mantle source regions (deep/shallow plumes, and possible convergence zones) may contribute to differences in mineralogy for the studied edifices. Finally, we show that the emissivity signatures of Idunn, Maat and other volcanic edifices are consistent with relatively fresh and unweathered rocks, indicating recent or possibly current volcanism on Venus.
Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars
Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex "doublet" type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral "doublet" unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral "doublet" shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The "doublet" type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these "doublet" type units may mark exciting areas for continued exploration important to astrobiology on Mars.
A Multiannual Record of Gravity Wave Activity in Mars's Lower Atmosphere from On-Planet Observations by the Mars Climate Sounder
Gravity waves in Mars's atmosphere strongly affect the general circulation as well as middle atmospheric cloud formation, but the climatology and sources of gravity waves in the lower atmosphere remain poorly understood. At Earth, the statistical variance in satellite observations of thermal emission above the instrumental noise floor has been used to enable measurement of gravity wave activity at a global scale. Here is presented an analysis of variance in calibrated radiance at 15.4 μm (635-665 cm) from off-nadir and nadir observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO); a major expansion in the observational data available for validating models of Martian gravity wave activity. These observations are sensitive to gravity waves at 20-30 km altitude with wavelength properties (λ =10-100 km, λ > 5 km) that make them likely to affect the dynamics of the middle and upper atmosphere. We find that: (1) strong, moderately intermittent gravity wave activity is scattered over the tropical volcanoes and throughout the middle to high latitudes of both hemispheres during fall and winter, (2) gravity wave activity noticeably departs from climatology during regional and global dust storms; and (3) strong, intermittent variance is observed at night in parts of the southern tropics during its fall/winter, but frequent CO ice clouds prevents unambiguous attribution to GW activity. The spatial distribution of wave activity is consistent with topographic sources being dominant, but contributions from boundary layer convection and other convective processes are possible.
Excitation of Tumbling in Phobos and Deimos
Mass-spring model simulations are used to investigate past spin states of a viscoelastic Phobos and Deimos. From an initially tidally locked state, we find crossing of a spin-orbit resonance with Mars or a mean motion resonance with each other does not excite tumbling in Phobos or Deimos. However, once tumbling our simulations show that these moons can remain so for an extended period and during this time their orbital eccentricity can be substantially reduced. We attribute the tendency for simulations of an initially tumbling viscoelastic body to drop into spin-synchronous state at very low eccentricity to the insensitivity of the tumbling chaotic zone volume to eccentricity. After a tumbling body enters the spin synchronous resonance, it can exhibit long lived non-principal axis rotation and this too can prolong the period of time with enhanced tidally generated energy dissipation. The low orbital eccentricities of Phobos and Deimos could in part be due to spin excitation by nearly catastrophic impacts rather than tidal evolution following orbital resonance excitation.
GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon
Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90-190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6-660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/m, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/m. For the and anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~37% of the regionally thin crust. The structure of (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift, however understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane.
Seismicity on tidally active solid-surface worlds
Tidal interactions between planets or stars and the bodies that orbit them dissipate energy in their interiors. The dissipated energy heats the interior and a fraction of that energy will be released as seismic energy. Here we formalize a model to describe the tidally-driven seismic activity on planetary bodies based on tidal dissipation. To constrain the parameters of our model we use the seismic activity of the Moon, driven by tidal dissipation from the Earth-Moon interactions. We then apply this model to predict the amount of seismic energy release and largest seismic events on other moons in our Solar System and exoplanetary bodies. We find that many moons in the Solar System should be more seismically active than the Earth's Moon and many exoplanets should exhibit more seismic activity than the Earth. Finally, we examine how temporal-spatial variations in tidal dissipation manifest as variations in the locations and timing of seismic events on these bodies.
Near/Far Side Asymmetry in the Tidally Heated Moon
Using viscoelastic mass spring model simulations to track heat distribution inside a tidally perturbed body, we measure the near/far side asymmetry of heating in the crust of a spin synchronous Moon in eccentric orbit about the Earth. With the young Moon within. 8 Earth radii of the Earth, we find that tidal heating per unit area in a lunar crustal shell is asymmetric due to the octupole order moment in the Earth's tidal field and is 10 to 20% higher on its near side than on its far side. Tidal heating reduces the crustal basal heat flux and the rate of magma ocean crystallization. Assuming that the local crustal growth rate depends on the local basal heat flux and the distribution of tidal heating in latitude and longitude, a heat conductivity model illustrates that a moderately asymmetric and growing lunar crust could maintain its near/far side thickness asymmetry but only while the Moon is near the Earth.