A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics
Geometric morphometrics is the statistical analysis of landmark-based shape variation and its covariation with other variables. Over the past two decades, the gold standard of landmark data acquisition has been manual detection by a single observer. This approach has proven accurate and reliable in small-scale investigations. However, big data initiatives are increasingly common in biology and morphometrics. This requires fast, automated, and standardized data collection. We combine techniques from image registration, geometric morphometrics, and deep learning to automate and optimize anatomical landmark detection. We test our method on high-resolution, micro-computed tomography images of adult mouse skulls. To ensure generalizability, we use a morphologically diverse sample and implement fundamentally different deformable registration algorithms. Compared to landmarks derived from conventional image registration workflows, our optimized landmark data show up to a 39.1% reduction in average coordinate error and a 36.7% reduction in total distribution error. In addition, our landmark optimization produces estimates of the sample mean shape and variance-covariance structure that are statistically indistinguishable from expert manual estimates. For biological imaging datasets and morphometric research questions, our approach can eliminate the time and subjectivity of manual landmark detection whilst retaining the biological integrity of these expert annotations.
Behavioral plasticity in response to perceived predation risk in breeding house wrens
Predation is a significant cause of nest failure in passerine birds, and, thus, natural selection is expected to favor behavioral plasticity to allow birds to respond to perceived changes in predation risk. However, behavioral plasticity in response to perceived predation risk, and its potential fitness-related costs, are understudied. In a wild population of breeding house wrens (), we tested the hypotheses that (1) birds show behavioral plasticity in response to perceived nest-predation risk to reduce self-risk or risk to offspring, but (2) this plasticity incurs fitness-related costs. We experimentally increased the perceived risk of nest predation by enlarging the diameter of the nestbox entrance from the standard 3.2 cm to 5.0 cm once incubation began. Unexpectedly, large-hole females spent significantly less time being vigilant than small-hole (control) females during late incubation. Both males and females also exhibited plasticity in their provisioning behavior. Large-hole males increased and large-hole females decreased provisioning visits with increasing brood size, whereas small-hole males and females behaved similarly and were unaffected by brood size. Females did not show plasticity in their incubation or brooding behavior. Notwithstanding this behavioral plasticity in response to increased perceived predation risk, treatment had no effect on hatching success or early hatchling survival, nor did it affect nestling body condition or fledging success. We conclude, therefore, that house wrens show behavioral plasticity in response to perceived nest-predation risk, but that any short-term fitness-related costs associated with this flexibility appear negligible.
Maternal natal environment and breeding territory predict the condition and sex ratio of offspring
Females in a variety of taxa adjust offspring sex ratios to prevailing ecological conditions. However, little is known about whether conditions experienced during a female's early ontogeny influence the sex ratio of her offspring. We tested for past and present ecological predictors of offspring sex ratios among known-age females that were produced as offspring and bred as adults in a population of house wrens. The body condition of offspring that a female produced and the proportion of her offspring that were male were negatively correlated with the size of the brood in which she herself was reared. The proportion of sons within broods was negatively correlated with maternal hatching date, and varied positively with the quality of a female's current breeding territory as predicted. However, females producing relatively more sons than daughters were less likely to return to breed in the population the following year. Although correlative, our results suggest that the rearing environment can have enduring effects on later maternal investment and sex allocation. Moreover, the overproduction of sons relative to daughters may increase costs to a female's residual reproductive value, constraining the extent to which sons might be produced in high-quality breeding conditions. Sex allocation in birds remains a contentious subject, largely because effects on offspring sex ratios are small. Our results suggest that offspring sex ratios are shaped by various processes and trade-offs that act throughout the female life history and ultimately reduce the extent of sex-ratio adjustment relative to classic theoretical predictions.
Fitness Effects of Thermal Stress Differ Between Outcrossing and Selfing Populations in
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use -a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)-to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.
Approaches to Macroevolution: 1. General Concepts and Origin of Variation
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
Approaches to Macroevolution: 2. Sorting of Variation, Some Overarching Issues, and General Conclusions
Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting-sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties-can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailing edges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology.
On Reciprocal Causation in the Evolutionary Process
Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.
Investigating the Relationship Between Body Shape and Life History Traits in Toothed Whales: Can Body Shape Predict Fast-Slow Life Histories?
A widespread pattern in vertebrate life-history evolution is for species to evolve towards either fast or slow life histories; however, the underlying causes of this pattern remain unclear. Toothed whales (Odontoceti) are a diverse group with a range of body sizes and life histories, making them an ideal model to investigate potential drivers of this dichotomy. Using ancestral reconstruction, we identified that certain groups of odontocetes evolved more-streamlined, presumably faster, body shapes around the same time that killer whales () evolved into whale predators approximately 1 Mya during the Pleistocene. This suggests that the evolution of a streamlined body shape may have been an adaptation to escape killer whale predation, leading to longer life-history events. To test this hypothesis, we performed a cluster analysis of odontocete whales and confirmed the dual pattern of life-history traits, with one group referred to as 'reproducers' characterized by early age of maturity, short gestation, short interbirth interval, and short lifespan, and the other group referred to as 'bet-hedgers' exhibiting the opposite pattern. However, we found that life history grouping was relatively unrelated to whale shape (i.e., more streamlined or less streamlined). Therefore, we incorporated principal component results into mixed effects models, and the model results indicated that body shape was positively related to neonate length (a measure of investment in progeny), but not significantly related to the temporal life-history traits. Thus, whale body shape is not a sufficient explanation for the evolution of fast-slow life histories in odontocete whales.
The Rarity of Survival to Old Age Does Not Drive the Evolution of Senescence
The evolution of senescence is often explained by arguing that, in nature, few individuals survive to be old and hence it is evolutionarily unimportant what happens to organisms when they are old. A corollary to this idea is that extrinsically imposed mortality, because it reduces the chance of surviving to be old, favors the evolution of senescence. We show that these ideas, although widespread, are incorrect. Selection leading to senescence does not depend directly on survival to old age, but on the shape of the stable age distribution, and we discuss the implications of this important distinction. We show that the selection gradient on mortality declines with age even in the hypothetical case of zero mortality, when survivorship does not decline. Changing the survivorship function by imposing age independent mortality has no affect on the selection gradients. A similar result exists for optimization models: age independent mortality does not change the optimal result. We propose an alternative, brief explanation for the decline of selection gradients, and hence the evolution of senescence.
The Macroecology of Chemical Communication in Lizards: Do Climatic Factors Drive the Evolution of Signalling Glands?
Chemical communication plays a pivotal role in shaping sexual and ecological interactions among animals. In lizards, fundamental mechanisms of sexual selection such as female mate choice have rarely been shown to be influenced by quantitative phenotypic traits (e.g., ornaments), while chemical signals have been found to potentially influence multiple forms of sexual and social interactions, including mate choice and territoriality. Chemical signals in lizards are secreted by glands primarily located on the edge of the cloacae (precloacal glands, PG) and thighs (femoral glands), and whose interspecific and interclade number ranges from 0 to > 100. However, elucidating the factors underlying the evolution of such remarkable variation remains an elusive endeavour. Competing hypotheses suggest a dominant role for phylogenetic conservatism (i.e., species within clades share similar numbers of glands) or for natural selection (i.e., their adaptive diversification results in deviating numbers of glands from ancestors). Using the prolific lizard radiation from South America (where PG vary from 0 to 14), we present one of the largest-scale tests of both hypotheses to date. Based on climatic and phylogenetic modelling, we show a clear role for both phylogenetic inertia and adaptation underlying gland variation: (i) solar radiation, net primary productivity, topographic heterogeneity and precipitation range have a significant effect on PG variation, (ii) humid and cold environments tend to concentrate species with a higher number of glands, (iii) there is a strong phylogenetic signal that tends to conserve the number of PG within clades. Collectively, our study confirms that the inertia of niche conservatism can be broken down by the need of species facing different selection regimes to adjust their glands to suit the demands of their specific environments.
Is the Capacity for Vocal Learning in Vertebrates Rooted in Fish Schooling Behavior?
The capacity to learn and reproduce vocal sounds has evolved in phylogenetically distant tetrapod lineages. Vocal learners in all these lineages express similar neural circuitry and genetic factors when perceiving, processing, and reproducing vocalization, suggesting that brain pathways for vocal learning evolved within strong constraints from a common ancestor, potentially fish. We hypothesize that the auditory-motor circuits and genes involved in entrainment have their origins in fish schooling behavior and respiratory-motor coupling. In this hypothesis, aural costs and benefits played a key role in shaping a wide variety of traits, which could readily be exapted for entrainment and vocal learning, including social grouping, group movement, and respiratory-motor coupling. Specifically, incidental sounds of locomotion and respiration (ISLR) may have reinforced synchronization by communicating important spatial and temporal information between school-members and extending windows of silence to improve situational awareness. This process would be mutually reinforcing. Neurons in the telencephalon, which were initially involved in linking ISLR with forelimbs, could have switched functions to serve vocal machinery (e.g. mouth, beak, tongue, larynx, syrinx). While previous vocal learning hypotheses invoke transmission of neurons from visual tasks (gestures) to the auditory channel, this hypothesis involves the auditory channel from the onset. Acoustic benefits of locomotor-respiratory coordination in fish may have selected for genetic factors and brain circuitry capable of synchronizing respiratory and limb movements, predisposing tetrapod lines to synchronized movement, vocalization, and vocal learning. We discuss how the capacity to entrain is manifest in fish, amphibians, birds, and mammals, and propose predictions to test our acoustic advantages hypothesis.
Extrinsic Mortality Can Shape Life-History Traits, Including Senescence
The Williams' hypothesis is one of the most widely known ideas in life history evolution. It states that higher adult mortality should lead to faster and/or earlier senescence. Theoretically derived gradients, however, do not support this prediction. Increased awareness of this fact has caused a crisis of misinformation among theorists and empirical ecologists. We resolve this crisis by outlining key issues in the measurement of fitness, assumptions of density dependence, and their effect on extrinsic mortality. The classic gradients apply only to a narrow range of ecological contexts where density-dependence is either absent or present but with unrealistic stipulations. Re-deriving the classic gradients, using a more appropriate measure of fitness and incorporating density, shows that broad ecological contexts exist where Williams' hypothesis is supported.
Evolution of the Mammalian Ear: An Evolvability Hypothesis
Encapsulated within the temporal bone and comprising the smallest elements of the vertebrate skeleton, the ear is key to multiple senses: balance, posture control, gaze stabilization, and hearing. The transformation of the primary jaw joint into the mammalian ear ossicles is one of the most iconic transitions in vertebrate evolution, but the drivers of this complex evolutionary trajectory are not fully understood. We propose a novel hypothesis: The incorporation of the bones of the primary jaw joint into the middle ear has considerably increased the genetic, regulatory, and developmental complexity of the mammalian ear. This increase in the number of genetic and developmental factors may, in turn, have increased the evolutionary degrees of freedom for independent adaptations of the different functional ear units. The simpler ear anatomy in birds and reptiles may be less susceptible to developmental instabilities and disorders than in mammals but also more constrained in its evolution. Despite the tight spatial entanglement of functional ear components, the increased "evolvability" of the mammalian ear may have contributed to the evolutionary success and adaptive diversification of mammals in the vast diversity of ecological and behavioral niches observable today. A brief literature review revealed supporting evidence for this hypothesis.
Genes that are Used Together are More Likely to be Fused Together in Evolution by Mutational Mechanisms: A Bioinformatic Test of the Used-Fused Hypothesis
Cases of parallel or recurrent gene fusions in evolution as well as in genetic disease and cancer are difficult to explain, because unlike point mutations, they can require the repetition of a similar configuration of multiple breakpoints rather than the repetition of a single point mutation. The used-together-fused-together hypothesis holds that genes that are used together repeatedly and persistently in a specific context are more likely to undergo fusion mutation in the course of evolution for mechanistic reasons. This hypothesis offers to explain gene fusion in both evolution and disease under one umbrella. Using bioinformatic data, we tested this hypothesis against alternatives, including that all gene pairs can fuse by random mutation, but among pairs thus fused, those that had interacted previously are more likely to be favored by selection. Results show that across multiple measures of gene interaction, human genes whose orthologs are fused in one or more species are more likely to interact with each other than random pairs of genes of the same genomic distance between pair members; that an overlap exists between genes that fused in the course of evolution in non-human species and genes that undergo fusion in human cancers; and that across six primate species studied, fusions predominate over fissions and exhibit substantial evolutionary parallelism. Together, these results support the used-together-fused-together hypothesis over its alternatives. Multiple implications are discussed, including the relevance of mutational mechanisms to the evolution of genome organization, to the distribution of fitness effects of mutation, to evolutionary parallelism and more.
Eco-Evolutionary Processes Generating Diversity Among Bottlenose Dolphin, , Populations off Baja California, Mexico
For highly mobile species that nevertheless show fine-scale patterns of population genetic structure, the relevant evolutionary mechanisms determining structure remain poorly understood. The bottlenose dolphin () is one such species, exhibiting complex patterns of genetic structure associated with local habitat dependence in various geographic regions. Here we studied bottlenose dolphin populations in the Gulf of California and Pacific Ocean off Baja California where habitat is highly structured to test associations between ecology, habitat dependence and genetic differentiation. We investigated population structure at a fine geographic scale using both stable isotope analysis (to assess feeding ecology) and molecular genetic markers (to assess population structure). Our results show that there are at least two factors affecting population structure for both genetics and feeding ecology (as indicated by stable isotope profiles). On the one hand there is a signal for the differentiation of individuals by ecotype, one foraging more offshore than the other. At the same time, there is differentiation between the Gulf of California and the west coast of Baja California, meaning that for example, nearshore ecotypes were both genetically and isotopically differentiated either side of the peninsula. We discuss these data in the context of similar studies showing fine-scale population structure for delphinid species in coastal waters, and consider possible evolutionary mechanisms.
Simplification, Innateness, and the Absorption of Meaning from Context: How Novelty Arises from Gradual Network Evolution
How does new genetic information arise? Traditional thinking holds that mutation happens by accident and then spreads in the population by either natural selection or random genetic drift. There have been at least two fundamental conceptual problems with imagining an alternative. First, it seemed that the only alternative is a mutation that responds "smartly" to the immediate environment; but in complex multicellulars, it is hard to imagine how this could be implemented. Second, if there were mechanisms of mutation that "knew" what genetic changes would be favored in a given environment, this would have only begged the question of how they acquired that particular knowledge to begin with. This paper offers an alternative that avoids these problems. It holds that mutational mechanisms act on information that is in the genome, based on considerations of simplicity, parsimony, elegance, etc. (which are different than fitness considerations). This simplification process, under the performance pressure exerted by selection, not only leads to the improvement of adaptations but also creates elements that have the capacity to serve in new contexts they were not originally selected for. Novelty, then, arises at the system level from emergent interactions between such elements. Thus, mechanistically driven mutation neither requires Lamarckian transmission nor closes the door on novelty, because the changes it implements interact with one another globally in surprising and beneficial ways. Finally, I argue, for example, that genes used together are fused together; that simplification leads to complexity; and that evolution and learning are conceptually linked.
Shape Covariation (or the Lack Thereof) Between Vertebrae and Other Skeletal Traits in Felids: The Whole is Not Always Greater than the Sum of Parts
Within carnivorans, cats show comparatively little disparity in overall morphology, with species differing mainly in body size. However, detailed shape analyses of individual osteological structures, such as limbs or skulls, have shown that felids display significant morphological differences that correlate with their observed ecological and behavioural ranges. Recently, these shape analyses have been extended to the felid axial skeleton. Results demonstrate a functionally-partitioned vertebral column, with regions varying greatly in level of correlation between shape and ecology. Moreover, a clear distinction is evident between a phylogenetically-constrained neck region and a selection-responsive posterior spine. Here, we test whether this regionalisation of function reflected in vertebral column shape is also translated into varying levels of phenotypic integration between this structure and most other skeletal elements. We accomplish this comparison by performing pairwise tests of integration between vertebral and other osteological units, quantified with 3D geometric morphometric data and analysed both with and without phylogenetic correction. To our knowledge, this is the first study to test for integration across a comprehensive sample of whole-skeleton elements. Our results show that, prior to corrections, strong covariation is present between vertebrae across the vertebral column and all other elements, with the exception of the femur. However, most of these significant correlations disappear after correcting for phylogeny, which is a significant influence on cranial and limb morphology of felids and other carnivorans. Our results thus suggest that the vertebral column of cats displays relative independence from other skeletal elements and may represent several distinct evolutionary morphological modules.
Behavioural Phenotypes and the Structure of Human Cognition
Human cognitive uniqueness is often defined in terms of cognitive abilities such as introspection, imitation and cooperativeness. However, little is known about how those traits vary in populations or correlate across individuals. Here we test whether those three cognitive domains are correlated manifestations of an underlying factor, analogous to the psychometric 'g' factor, or independent 'behavioural phenotypes', analogous to the 'Big-Five' personality components. We selected eight variables measuring introspection and extraversion, verbal and physical imitation, cooperation and punishment, and evaluated their individual variability, domain-consistency and sub-structuring in a sample of 84 individuals. Results show high variation and limited clustering into three independent 'behavioural phenotypes' of introspection, imitation and cooperation. Only one significant correlation was identified (between two measures of extraversion), while other within-domain measures (introspection vs. extraversion, verbal vs. physical imitation, and cooperation vs. punishment) were not associated. Finally, no between-domain association was identified either through correlations or factor analysis. Overall, the results do not lend support to the hypothesis of a general 'behavioural phenotype' underlying individual behaviour. The independence of behaviours of introspection, imitation and cooperation may be the reason why individuals are able to adopt different behavioural strategies (combinations of behavioural phenotypes) and play distinct roles in the maintenance of human distinctive features such as hyper-cooperation and cumulative culture.
An Evolutionary Perspective on Linoleic Acid Synthesis in Animals
The diet of organisms generally provides a sufficient supply of energy and building materials for healthy growth and development, but should also contain essential nutrients. Species differ in their exogenous requirements, but it is not clear why some species are able to synthesize essential nutrients, while others are not. The unsaturated fatty acid, linoleic acid (LA; 18:2n-6) plays an important role in functions such as cell physiology, immunity, and reproduction, and is an essential nutrient in diverse organisms. LA is readily synthesized in bacteria, protozoa and plants, but it was long thought that all animals lacked the ability to synthesize LA de novo and thus required a dietary source of this fatty acid. Over the years, however, an increasing number of studies have shown active LA synthesis in animals, including insects, nematodes and pulmonates. Despite continued interest in LA metabolism, it has remained unclear why some organisms can synthesize LA while others cannot. Here, we review the mechanisms by which LA is synthesized and which biological functions LA supports in different organisms to answer the question why LA synthesis was lost and repeatedly gained during the evolution of distinct invertebrate groups. We propose several hypotheses and compile data from the available literature to identify which factors promote LA synthesis within a phylogenetic framework. We have not found a clear link between our proposed hypotheses and LA synthesis; therefore we suggest that LA synthesis may be facilitated through bifunctionality of desaturase enzymes or evolved through a combination of different selective pressures.
Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.
Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species
The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species and (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with -statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations.