JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY

A kinetic study of biotransformation from valencene to nootkatone in an oscillatory baffled reactor
Chilmeran M, Hodges M and Ni XW
In this paper we report our kinetic study of an oxidation reaction from valencene to nootkatone using enzyme in an oscillatory baffled reactor. The aims of this work are to elucidate the reaction mechanism and evaluate reaction kinetics. Towards these objectives, a full kinetic model using the Langmuir-Hinshelwood method was established and applied to the experimental data, allowing reactor schemes and orders to be confirmed and reaction rate constants to be extracted. Our full kinetic analysis suggests that most of the reversible reaction steps can be treated as irreversible, simplifying the overall reaction schemes. The effect of mass transfer on the kinetics was also investigated. © 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Enhanced production of amylase, pyruvate and phenolic compounds from glucose by light-driven -CuS nanobiohybrids
Priyanka U and Lens PN
The demand for value-added compounds such as amylase, pyruvate and phenolic compounds produced by biological methods has prompted the rapid development of advanced technologies for their enhanced production. Nanobiohybrids (NBs) make use of both the microbial properties of whole-cell microorganisms and the light-harvesting efficiency of semiconductors. Photosynthetic NBs were constructed that link the biosynthetic pathways of with CuS nanoparticles.
Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials
Rabiee N, Ahmadi S, Soufi GJ, Hekmatnia A, Khatami M, Fatahi Y, Iravani S and Varma RS
The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).
Effect of membrane performance variability with temperature and feed composition on pervaporation and vapor permeation system design for solvent drying
Vane LM
The presence of water in organic solvents and biofuels can complicate their production and reuse because many hydrophilic solvents form difficult-to-separate mixtures with water (e.g., azeotropes). Pervaporation (PV) and vapor permeation (V⋅P) remove water from such mixtures via selective solution-diffusion transport through a membrane material. A recent article reviewed design factors that impact the effectiveness of PV/V⋅P solvent dehydration processes ( 95: 495-512 (2020)). For the sake of simplicity, the earlier work assumed constant membrane permeabilities. The objective here is to explore the impact of variable permeabilities on predictions of PV/V⋅P system performance.
Ethanol dehydration performance of three types of commercial-grade zeolite permselective membranes
Vane L, Alvarez F, Namboodiri V and Abar M
Many organic solvents form difficult-to-separate mixtures with water and have an affinity for water, making drying a potential reuse prerequisite. Pervaporation (PV) and vapor permeation (VP) membrane technologies hold promise for energy-efficient solvent drying. Several water-selective membrane materials are commercially available, but performance data is limited, particularly for two recently commercialized membrane materials: chabazite (CHA) and T-type zeolites. In this work, commercial-grade samples of CHA and T-type membranes, along with a NaA zeolite membrane, were evaluated for the removal of water from ethanol.
Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers
Hanga MP, Nienow AW, Murasiewicz H, Pacek AW, Hewitt CJ and Coopman K
Traditional large-scale culture systems for human mesenchymal stem/stromal cells (hMSCs) use solid microcarriers as attachment substrates. Although the use of such substrates is advantageous because of the high surface-to-volume ratio, cell harvest from the same substrates is a challenge as it requires enzymatic treatment, often combined with agitation. Here, we investigated a two-phase system for expansion and non-enzymatic recovery of hMSCs. Perfluorocarbon droplets were dispersed in a protein-rich growth medium and were used as temporary liquid microcarriers for hMSC culture.
Covid 19 - pandemic in India
Rathore AS
Covid-19: biotechnologists make their contribution
Scale-down studies for the scale-up of a recombinant fed-batch fermentation: loss of homogeneity leads to lower levels of cadaverine production
Olughu W, Nienow A, Hewitt C and Rielly C
The loss of efficiency and performance of bioprocesses on scale-up is well known, but not fully understood. This work addresses this problem, by studying the effect of some fermentation gradients (pH, glucose and oxygen) that occur at the larger scale in a bench-scale two-compartment reactor [plug flow reactor (PFR) + stirred tank reactor (STR)] using the cadaverine-producing recombinant DM1945 Δact3 Ptuf-ldcC_OPT. The new scale-down strategy developed here studied the effect of increasing the magnitude of fermentation gradients by considering not only the average cell residence time in the PFR ( ), but also the mean frequency at which the bacterial cells entered the PFR ( ) section of the two-compartment reactor.
Review of Pervaporation and Vapor Permeation Process Factors Affecting the Removal of Water from Industrial Solvents
Vane LM
A recent review article ( : 343-365 (2019)) identified several commercially-available permselective materials for drying organic solvents with pervaporation (PV) and vapor permeation (V·P) separation processes. The membrane materials included polymeric and inorganic substances exhibiting a range in the performance characteristics: water permeance, water/solvent selectivity, and maximum use temperature. This paper provides an overview of the factors affecting the design of PV/V·P processes utilizing these membranes to remove water from common organic solvents. Properties of the specific membrane and of the solvent substantially affect the PV/V·P separation. Equally important is the impact of operating parameters on the overall separation. To study these impacts, simplified process performance equations and detailed spreadsheet calculations were developed for single-pass and recirculating batch PV systems and for single-pass V·P systems. Estimates of membrane area, permeate concentration, solvent recovery, permeate condenser temperatures, and heating requirements were calculated. Process variables included: solvent type, water permeance, water/solvent selectivity, initial and final water concentrations, operating temperature (PV) or feed pressure (V·P), temperature drop due to evaporation (PV) or feed-side pressure drop (V·P), and permeate pressure. The target solvents considered were: acetonitrile, 1-butanol, -dimethyl formamide, ethanol, methanol, methyl isobutyl ketone, methyl tert-butyl ether, tetrahydrofuran, acetone, and 2-propanol.
Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine
Gajda I, Greenman J, Santoro C, Serov A, Atanassov P, Melhuish C and Ieropoulos IA
In this work, a small-scale ceramic microbial fuel cell (MFC) with a novel type of metal-carbon-derived electrocatalyst containing iron and nicarbazin (Fe-NCB) was developed, to enhance electricity generation from neat human urine. Substrate oxidation at the anode provides energy for the separation of ions and recovery from urine without any chemical or external power additions.
Platinum(II) reduction to platinum nanoparticles in anaerobic sludge
Simon-Pascual A, Sierra-Alvarez R and Field JA
To help mitigate future problems in the supply of platinum group metals (PGM) due to their scarcity and high demand, new recovery processes must be developed. Microbial processes are a great alternative for the recovery of PGM from waste since they are clean and environmentally friendly techniques. This research studied the microbial reduction of Pt(II) using an anaerobic granular sludge under different physiological conditions.
Selective and mild fractionation of microalgal proteins and pigments using aqueous two-phase systems
Suarez Ruiz CA, Emmery DP, Wijffels RH, Eppink MH and van den Berg C
Microalgal biomass is generally used to produce a single product instead of valorizing all of the cellular components. The biomass production and downstream processes are too expensive if only one product is valorized. A new approach was proposed for the simultaneous and selective partitioning of pigments and proteins from disrupted cultivated under saline and freshwater conditions.
Re-using bauxite residues: benefits beyond (critical raw) material recovery
Ujaczki É, Feigl V, Molnár M, Cusack P, Curtin T, Courtney R, O'Donoghue L, Davris P, Hugi C, Evangelou MW, Balomenos E and Lenz M
Since the world economy has been confronted with an increasing risk of supply shortages of critical raw materials (CRMs), there has been a major interest in identifying alternative secondary sources of CRMs. Bauxite residues from alumina production are available at a multi-million tonnes scale worldwide. So far, attempts have been made to find alternative re-use applications for bauxite residues, for instance in cement / pig iron production. However, bauxite residues also constitute an untapped secondary source of CRMs. Depending on their geological origin and processing protocol, bauxite residues can contain considerable amounts of valuable elements. The obvious primary consideration for CRM recovery from such residues is the economic value of the materials contained. However, there are further benefits from re-use of bauxite residues in general, and from CRM recovery in particular. These go beyond monetary values (e.g. reduced investment / operational costs resulting from savings in disposal). For instance, benefits for the environment and health can be achieved by abatement of tailing storage as well as by reduction of emissions from conventional primary mining. Whereas certain tools (e.g. life-cycle analysis) can be used to quantify the latter, other benefits (in particular sustained social and technological development) are harder to quantify. This review evaluates strategies of bauxite residue re-use / recycling and identifies associated benefits beyond elemental recovery. Furthermore, methodologies to translate risks and benefits into quantifiable data are discussed. Ultimately, such quantitative data are a prerequisite for facilitating decision-making regarding bauxite residue re-use / recycling and a stepping stone towards developing a zero-waste alumina production process. © 2018 The Authors. published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Application of a thermostable Baeyer-Villiger monooxygenase for the synthesis of branched polyester precursors
Delgove MA, Elford MT, Bernaerts KV and De Wildeman SM
It is widely accepted that the poor thermostability of Baeyer-Villiger monooxygenases limits their use as biocatalysts for applied biocatalysis in industrial applications. The goal of this study was to investigate the biocatalytic oxidation of 3,3,5-trimethylcyclohexanone using a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) for the synthesis of branched ϵ-caprolactone derivatives as building blocks for tuned polymeric backbones. In this multi-enzymatic reaction, the thermostable cyclohexanone monooxygenase was fused to a phosphite dehydrogenase (PTDH) in order to ensure co-factor regeneration.
Media photo-degradation in pharmaceutical biotechnology - impact of ambient light on media quality, cell physiology, and IgG production in CHO cultures
Neutsch L, Kroll P, Brunner M, Pansy A, Kovar M, Herwig C and Klein T
Many vital components in bioprocess media are prone to photo-conversion or photo-degradation upon exposure to ambient light, with severe negative consequences for biomass yield and overall productivity. However, there is only limited awareness of light irradiation as a potential risk factor when working in transparent glass bioreactors, storage vessels or disposable bag systems. The chemical complexity of most media renders a root-cause analysis difficult. This study investigated in a novel, holistic approach how light-induced changes in media composition relate to alterations in radical burden, cell physiology, morphology, and product formation in industrial Chinese hamster ovary (CHO) bioprocesses.
Separation of immunoglobulin G using aqueous biphasic systems composed of cholinium-based ionic liquids and poly(propylene glycol)
Ramalho CC, Neves CMSS, Quental MV, Coutinho JAP and Freire MG
The use of antibodies, such as immunoglobulin G (IgG), has faced a significant growth in the past decades for biomedical and research purposes. However, antibodies are high cost biopharmaceuticals, for which the development of alternative and cost-effective purification strategies is still in high demand.
Potential of Aqueous Two-Phase Systems for the Separation of Levodopa from Similar Biomolecules
Sousa RCS, Neves CMSS, Pereira MM, Freire MG and Coutinho JAP
Levodopa is a precursor of several neurotransmitters, such as dopamine, and is used in the treatment of the Parkinson's disease. In this work, an alternative strategy was studied to separate levodopa from similar biomolecules using aqueous two-phase systems (ATPS).
Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge
Simon-Pascual A, Sierra-Alvarez R, Ramos-Ruiz A and Field JA
The future supply of platinum group metals (PGM) is at risk because of their scarcity combined with a high demand. Thus recovery of platinum (Pt) from waste is an option worthy of study to help alleviate future shortages. This research explored the microbial reduction of platinum (Pt). The ability of anaerobic granular sludge to reduce Pt(IV) ions under different physiological conditions was studied.
Good's Buffer Ionic Liquids as Relevant Phase-Forming Components of Self-Buffered Aqueous Biphasic Systems
Taha M, Quental MV, E Silva FA, Capela EV, Freire MG, Ventura SPM and Coutinho JAP
A series of new self-buffering ionic liquids (ILs) based on Good's buffers (GBs) anions and the tetrabutylphosphonium cation ([P]) was here synthesized and characterized. The self-buffering behaviour of the GB-ILs was confirmed by measuring their protonation constants by potentiometry. Further, their ability to form aqueous biphasic systems with the biodegradable potassium citrate salt was evaluated, and further investigated for the extraction of proteins, using bovine serum albumin (BSA) as a model protein. If these ionic structures display self-buffering characteristics as well as a low toxicity towards the luminescent bacteria , they were additionally found to be highly effective in the formation of ABS and in the extraction of BSA - extraction efficiencies of 100% to the IL-rich phase obtained in a single-step. The BSA secondary structure in the aqueous IL-rich solutions was evaluated through infrared spectroscopic studies revealing the protein-friendly nature of the synthesized ILs. Dynamic light scattering (DLS), "COnductor-like Screening MOdel for Real Solvents" (COSMO-RS), and molecular docking studies were finally carried out to better understand the main driving forces of the extraction process. The results suggest that van der Waals and hydrogen-bonding interactions are important driving forces of the protein migration towards the GB-IL-rich phase, while the molecular docking investigations demonstrated a stabilizing effect of the studied ILs over the protein.
Review: Membrane Materials for the Removal of Water from Industrial Solvents by Pervaporation and Vapor Permeation
Vane LM
Organic solvents are widely used in a variety of industrial sectors. Reclaiming and reusing the solvents may be the most economically and environmentally beneficial option for managing spent solvents. Purifying the solvents to meet reuse specifications can be challenging. For hydrophilic solvents, water must be removed prior to reuse, yet many hydrophilic solvents form hard-to-separate azeotropic mixtures with water. Such mixtures make separation processes energy intensive and cause economic challenges. The membrane processes pervaporation (PV) and vapor permeation (VP) can be less energy intensive than distillation-based processes and have proven to be very effective in removing water from azeotropic mixtures. In PV/VP, separation is based on the solution-diffusion interaction between the dense permselective layer of the membrane and the solvent/water mixture. This review provides a state-of-the-science analysis of materials used as the selective layer(s) of PV/VP membranes in removing water from organic solvents. A variety of membrane materials, such as polymeric, inorganic, mixed matrix, and hybrid, have been reported in the literature. A small subset of these are commercially available and highlighted here: poly(vinyl alcohol), polyimides, amorphous perfluoro polymers, NaA zeolites, chabazite zeolites, T-type zeolites, and hybrid silicas. The typical performance characteristics and operating limits of these membranes are discussed. Solvents targeted by the U.S. Environmental Protection Agency for reclamation are emphasized and ten common solvents are chosen for analysis: acetonitrile, 1-butanol, -dimethyl formamide, ethanol, methanol, methyl isobutyl ketone, methyl tert-butyl ether, tetrahydrofuran, acetone, and 2-propanol.