MARINE BIOTECHNOLOGY

Transcriptome Reveals Molecular Mechanisms of Neuroendocrine Regulation of Allometric Growth in the Red Swamp Crayfish Procambarus clarkii
Chen Z, Wang Y, Tao X, Qiao Y, Li X, Feng J and Li J
Allometric growth is a typical characteristic of crustaceans, which mainly occurs among individuals, life stages, tissues, and between sexes. The red swamp crayfish Procambarus clarkii is an economically important crustacean species in the world. To date, the molecular regulatory mechanisms of neuroendocrine system in the allometric growth of P. clarkii remain unclear. In this study, P. clarkii exhibiting significant allometric growth among individuals were sampled from three full-sibling families. The brain, eyestalk, nerve cord, and Y-organ were dissected for transcriptome analysis. Key functional genes were identified by random forest and DESeq2 methods. The gene pathways were enriched utilizing Kyoto Encyclopedia Genes and Genomes (KEGG) analysis. Gene topological analysis was established through weighted gene co-expression network analysis (WGCNA), and hub genes were screened by protein-protein interaction (PPI) networks. Transcriptomic analysis results were validated via qRT-PCR. RNA-Seq identified 31 differentially expressed genes (DEGs) (7 up- and 24 downregulated); 301 DEGs (23 up- and 278 downregulated); 1308 DEGs (474 up- and 834 downregulated); and 64 DEGs (52 up- and 12 downregulated) in the brain, eyestalk, Y-organ, and nerve cord, respectively. Crucial functional genes such as CHIA in the brain and perlucin-like in the eyestalk were notably identified. WGCNA revealed two hub modules, while PPI networks identified neuroendocrine regulators module which hub genes mainly including CP1876-like and cuticle protein AM1199-like, and structural components module which hub genes mainly including CUB& CCP Domain-Containing Protein, ARRDC, and E3 Ubiquitin protein ligase MCYCBP2-like. Correspondingly, the significant gene pathways such as amino sugar and nucleotide sugar metabolism (pcla00520) and insect hormone biosynthesis (pcla00981) were enriched. The results revealed the complex interactions and regulatory relationships of hub genes within hub modules to coordinate molting and growth. The results of RNA-Seq analysis were validated by the consistency of gene expression in qRT-PCR. In present study, key functional genes in the neuroendocrine system regulating allometric growth among individuals were identified, and significant pathways mainly include hormone synthesis were screened, thus constructing a neuroendocrine molecular regulatory network for the allometric growth of P. clarkii. Building on these investigations, a comprehensive mechanism whereby neuroendocrine regulators interact with structural components to coordinate molting and growth was proposed. The result would provide valuable insights into the molecular regulatory mechanisms of allometric growth, highlighting the interplay between the neuroendocrine system and relevant tissues.
Chemical Survey and Antifungal Efficacy of Sargassum muticum's Alkaloids and Phenolic-Rich Fraction Against Airborne Toxigenic and Nosocomial Opportunistic Molds Isolates
Younssi Tarhzouti H, El Mouns BD, Ben-Saghroune H, Haida S, Mabrouki S, Lakhdar F and Etahiri S
The Atlantic coastline of El-Jadida, Morocco, is renowned for its plentiful algae, especially brown seaweed, which is rich in active compounds known for their antifungal properties. This valuable resource offers an exciting opportunity to tackle the numerous challenges posed by invasive fungal infections, allergies, mycotoxin-related food poisoning, and drug-resistant strains. Underscoring the urgent need to explore alternative, sustainable, and environmentally friendly antifungal agents derived from algae. This study aimed to evaluate the antifungal activity of total alkaloids and phenolic-rich fractions derived from seven species of Pheophyceae: Sargassum muticum, Sargassum vulgare, Bifurcaria bifurcata, Cystoseira tamariscifolia, Cystoseira humilis, Laminaria ochroleuca, and Fucus spiralis against four fungi: airborne toxigenic isolates of Aspergillus westerdijkiae and Chaetomium globosum as well as nosocomial opportunistic isolates of Aspergillus nidulans and Scopulariopsis brevicaulis. The study also aimed to identify the most effective alga and its specific active compounds through LC-MS and GC-MS analysis. The invasive Sargassum muticum was chosen as the most potent alga in inhibiting the growth of mycelium. For the first time, the alkaloids palmatine and jatrorrhizine, along with caulerpin, have been identified. The chloroform fraction revealed the prevalence of phenolic compounds including, phenolic acids, flavonoids, and phlorotannins. The lowest minimum inhibitory concentrations (MICs), with a maximum fungal load of 10 colony-forming unit (CFU), recorded ranged from 3.12 to 6.25 μg/mL by the phenolic-rich fraction against airborne toxigenic isolates, and from 100 to 200 μg/mL against nosocomial opportunistic isolates by the total alkaloids. In comparison, the positive control, ketoconazole, showed higher MICs and resistance against A. nidulans. The valorization of Sargassum muticum is proposed as a green strategy to preserve the ecological balance, combat antifungal resistance, and address public health challenges.
Biodegradation of Di-2-Ethylhexyl Phthalate by Mangrove Sediment Microbiome Impacted by Chronic Plastic Waste
Saeng-Kla K, Mhuantong W, Termsaithong T, Pinyakong O and Sonthiphand P
Plastic pollution through the leaching of di(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, has led to the emergence of mangrove pollution. This study aimed to assess the DEHP removal efficiency of indigenous mangrove sediment microbiomes and identify key DEHP degraders using microcosm construction and metagenomic analysis. During the 35-day incubation period, the indigenous mangrove sediment microbiome, affected by chronic plastic pollution, demonstrated a 99% degradation efficiency of 200 mg/kg DEHP. Spearman's correlation analysis suggested that Myxococcales, Methyloligellaceae, Mycobacterium, and Micromonospora were potentially responsible for DEHP degradation. Based on PICRUSt2, the DEHP-degrading pathway in the sediment was predicted to be an anaerobic process involving catechol metabolism through catC, pcaD, pcaI, pcaF, and fadA. Efficient bacterial isolates from the mangrove sediment, identified as Gordonia sp. and Gordonia polyisoprenivorans, were able to degrade DEHP (65-97%) within 7 days and showed the ability to degrade other phthalate esters (PAEs).
Establishment of Nile Tilapia Primary Cell Culture Methods and In Vitro Cell Knockdown Techniques
Huang S, Wei S, Jiao H, Huang S, Li Q, Wang Z, Tang Y, Chen L and Lu J
As an important aquaculture species and research model, Nile tilapia (Oreochromis niloticus) has not yet been systematically studied for the isolation, culture, and in vitro gene manipulation techniques of primary cells from various tissues. This study aimed to explore methods for isolating primary cells from various tissues, as well as developing in vitro gene manipulation techniques in Nile tilapia. Four different Nile tilapia tissues were enzymatically digested and separated using trypsin or collagenase. Collagenase (0.1%) was used for the digestion of the gonads, liver, and heart, while trypsin (0.25%) showed better adhesion efficiency for spleen tissue. Moreover, we assessed EGFP fluorescence intensity and cell survival rates following transfection with empty siRNA (siRNA-NC), lentivirus (LV-NC), and six adeno-associated virus (AAV-NC) serotypes (AAV2-NC, AAV5-NC, AAV6-NC, AAV8-NC, AAV9-NC, AAV-DJ-NC) in gonadal cells. The results demonstrated that cells transfected with siRNA-NC and LV-NC showed the highest levels of green fluorescent protein expression and survival rates in primary gonadal cells, compared to AAC-NC. Subsequently, we knocked down the Kdm6bb gene in Nile tilapia primary gonadal cells by transfecting them with LV-Kdm6bb and siRNA-Kdm6bb. qPCR and immunofluorescence analyses demonstrated a significant reduction in Kdm6bb mRNA levels following transfection with siRNA-Kdm6bb compared to siRNA-NC, and with LV-Kdm6bb compared to LV-NC. This study offers valuable tools for the validation of primary cell isolation and in vitro molecular regulatory mechanisms and functions in Nile tilapia.
Transcriptomic Analysis Reveals Dynamics of Gene Expression in Liver Tissue of Spotted Sea Bass Under Acute Thermal Stress
Li P, Sun Y, Wen H, Qi X, Zhang Y, Sun D, Liu C and Li Y
The spotted sea bass (Lateolabrax maculatus), a eurythermal species, exhibits strong adaptability to temperature variations and presents an ideal model for studying heat stress-responsive mechanisms in fish. This study examined the liver transcriptome of spotted sea bass over a 24-h period following exposure to elevated temperatures, rising from 25 to 32 °C. The results revealed significant alterations in gene expression in response to this thermal stress. Specifically, we identified 1702, 1199, 3128, and 2636 differentially expressed genes at 3, 6, 12, and 24 h post-stress, respectively. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify specific gene modules responsive to heat stress, containing hub genes such as aco2, eci2, h6pd, suclg1, fgg, fga, fgb, f2, and apoba, which play central roles in the heat stress response. Enrichment analyses via KEGG and GSEA indicated that upregulated differentially expressed genes (DEGs) are predominantly involved in protein processing in the endoplasmic reticulum, while downregulated genes are primarily associated with the AGE-RAGE signaling pathways. Additionally, 272 genes exhibited differential alternative splicing, primarily through exon skipping, underscoring the complexity of transcriptomic adaptations. These findings provide deeper insights into the molecular responses to thermal stress and are crucial for advancing the breeding of heat-resistant strains of spotted sea bass.
Study on the Mechanism and Potential of Corbicula fluminea (Asian Clam) in Removing Copper and Cadmium from Aquaculture Ponds
Zhang J, Wang J, Gu Z and Liu X
The issue of heavy metal pollution in aquaculture ponds is becoming increasingly severe, posing a significant threat to the healthy development of the aquaculture industry. Heavy metals such as cadmium and copper accumulate in ponds, not only exerting toxic effects on aquatic organisms and affecting their growth and reproduction but also endangering human health through the food chain. Bioremediation, as a green and environmentally friendly technology, utilizes specific organisms to absorb, transform, and immobilize heavy metals. We examined metal accumulation, traditional metal-related biomarkers, alongside transcriptomic and tissue histological analyses, in the hepatopancreas of Corbicula fluminea following a 14-day exposure to copper (20 µg/L), cadmium (20 µg/L), or combined copper-cadmium treatments (20 µg/L Cu and 20 µg/L Cd). Metal exposure led to notable metal accumulation in the clam's hepatopancreas. Analysis of traditional biomarkers revealed signs of cellular injury and oxidative stress in clams post-metal exposure. Transcriptomic analysis across the three treatment groups revealed disruptions in immune response, response to metal ion, and energy metabolism, characterized by differential expression levels of key genes such as ABCA3, MYD88, TOLLIP, TBK1, C2, C4, c-Myc, SYK, and SAMHD1. These findings deepen our understanding of the adverse effects of metal exposure on freshwater organisms and evaluate the potential of Corbicula fluminea for removing heavy metals from aquaculture ponds.
Embryonic Temperature Influences the Mucosal Responses of Atlantic Salmon Alevins to a Bacterial Challenge
Malik MS, Rebl A, Burgerhout E and Lazado CC
The present work investigated the effects of embryonic temperature on the responses of Atlantic salmon (Salmo salar) alevins to a bacterial challenge using Yersinia ruckeri as a model pathogen. Embryos were reared at 4 °C, 6 °C, and 8 °C from fertilization to the eyed-egg stage. Alevins, before the start of feeding, were challenged with the pathogen, and mortality and early immune responses in mucosal organs were assessed. Fish from the 4 °C and 6 °C groups exhibited higher survival probabilities than those from the 8 °C group 72 h post-infection. Mild histopathological changes were observed in the gills and skin across all temperature groups, with bacterial antigen detected in the secondary lamellae of gills and in the skin epithelial and basal layers. Gene expression profiling revealed slightly distinct immune gene expression patterns in low-temperature groups (4 °C and 6 °C) compared to the 8 °C group. Gelsolin (gsn) expression increased in the skin across all temperature groups at 72 h post-infection. Claudin (cldn4) and collagen (col1a) were only upregulated in the skin of the 4 °C group, while heat shock protein 70 (hspa1a) was downregulated in the gills of infected fish at 72 h compared to controls. Toll-like receptor 13 (tlr13) expression increased in infected fish at 24 h compared to controls. In the 6 °C and 8 °C groups, gsn expression also increased at 72 h post-infection. Cldn4 expression increased only in the gills of 8 °C infected fish. This study revealed that low embryonic temperature could influence survival and mucosal immune defences following a bacterial challenge in Atlantic salmon alevins.
Differentially Expressed Genes and Alternative Splicing Analysis Revealed the Difference in Virulence to American Eels (Anguilla rostrata) Infected by Edwardsiella anguillarum and Aeromonas hydrophila
Lin P, Chen Z, Sun G and Guo S
Edwardsiella anguillarum and Aeromonas hydrophila are two common bacterial pathogens affecting cultivated eels, and the differences in their virulence remain unclear. In this study, after two groups of American eels (Anguilla rostrata) were administered the LD dose of E. anguillarum and A. hydrophila, respectively, the histopathology of the liver, trunk kidney, and spleen, as well as transcriptomic RNA sequencing (RNA-seq) analysis of the spleen, was examined at three time points: pre-infection (Con group) and post-infection at 36 h (Ea_36 group, Ah_36 group) and 60 h (Ea_60 group, Ah_60 group). The results showed that the differences in pathological changes were characterized by severe hepatocyte edema at 36 h post-infection (hpi) and hepatocyte atrophy at 60 hpi in the livers of eels infected by A. hydrophila, in contrast to the severe atrophy of glomeruli in the trunk kidneys and numerous bacterial nodules in the spleens of eels infected by E. anguillarum. The RNA-seq results revealed 906 and 77 typical differentially expressed genes (DEGs) in eels infected with E. anguillarum and A. hydrophila, respectively, compared to the control eels. The DEGs between the infected and control groups were predominantly annotated in GO terms related to binding, catalytic activity, membrane part, cell part, and cellular process, as well as in KEGG pathways associated with human diseases and organismal systems. The GO enrichment analysis showed 83 and 146 differential GO terms, along with 32 and 78 differential KEGG pathways in two comparisons of Ea_36 vs Con versus Ah_36 vs Con and Ea_60 vs Con versus Ah_60 vs Con, respectively. Furthermore, the analysis of differential alternative splicing genes (DASs) showed 1244 and 1341 DASs out of 12,907 and 12,833 AS genes, respectively, in the comparisons of Ea_36 vs Ah_36 and Ea_60 vs Ah_60. These DASs were enriched in two common KEGG pathways: "NOD-like receptor signaling pathway" and "necroptosis" which shared 11 hub DASs. Finally, analysis of protein-protein interactions revealed that 91 of 412 cross DASs between Ea_36 vs Ah_36 and Ea_60 vs Ah_60 potentially play an essential role in the difference in virulence of E. anguillarum and A. hydrophila in American eels, with 12 encoded proteins being particularly notable. Together, this study is the first to report a comparative pathogenicity and RNA-seq analysis of E. anguillarum and A. hydrophila in American eels, shedding new light on our understanding of the differences in virulence as revealed by pathological changes, DEGs, and DASs, contributing to more effective control strategies to prevent outbreaks of bacterial infections.
Histone Modifications in the Anoxic Northern Crayfish, Faxonius virilis
Rhzali I and Storey KB
Northern Crayfish, Faxonius virilis, displays various strategies that allow them to survive extended periods of oxygen deprivation. However, certain epigenetic adaptations that these crayfish use have not been studied in detail, and the role of specific mechanisms used such as histone modifications remain unknown. Epigenetic studies offer a new perspective on how crayfish can regulate gene expression to redirect energy to essential functions needed for survival. This study investigates the regulation of histone modifications of proteins including acetylation and deacetylation in F. virilis in response to 20-h anoxia exposure. These histone modifications were studied via analysis of writer, reader, and eraser proteins such as lysine acetyltransferases (KATs), bromodomain proteins (BRDs), histone deacetylases (HDAC), and sirtuin proteins (SIRTs). Significant upregulation was seen in one histone protein and one lysine acetyltransferase: H3K14Ac and KAT2A. These proteins are known to be regulated by BRD2; a protein that specifically reads and targets H3K14Ac. In response to anoxia, a larger number of histone deacetylases and sirtuin proteins were upregulated in comparison to lysine acetyltransferases suggesting a focus on suppression of gene expression. The histone deacetylases and sirtuin proteins with significant upregulation were HDAC2, HDAC3, SIRT2, SIRT3, and SIRT6. These proteins have also all been implicated in DNA damage regulation which further suggests that crayfish focus limited energy on ensuring cell survival. This study provides an understanding of how histone acetylation and deacetylation are regulated in crayfish as a component of metabolic rate suppression under anoxia.
Correlation Between Effector Gene Expression Targeted by lncRNAs in the Oomycete Fish Pathogen, Saprolegnia parasitica
Liao L, Zhao Z, Zhang R, Luo C, Hu Y, Yu Z and Cui J
Saprolegniasis caused by Saprolegnia parasitica leads to significant economic losses in the aquaculture industry worldwide. Effector proteins secreted by pathogens are key molecules involved in their pathogenicity and long non-coding lncRNAs (lncRNAs) act as regulators in these processes. However, little is known about the lncRNAs and effector proteins in S. parasitica. Here, we first identified 1027 lncRNAs during the developmental stages and infection process of S. parasitica. Compared with mRNAs, these lncRNAs had shorter sequences and exon lengths and lower expression levels. In addition, their sequence conservation among other oomycete species was also low. The S. parasitica lncRNAs were characterized according to developmental stage and infection time point. We also identified effector proteins using a computational pipeline. In total, 131 S. parasitica effector proteins were identified and classified into 34 families. The 47 genes encoding effector genes were neighbors of 39 lncRNAs, and there was a correlation between the transcription level of lncRNAs and their neighboring genes. Gain- and loss-of-function experiments revealed that lncRNA8375.2 promoted the expression of a neighboring effector gene, SpCAP. Our results provide new data on S. parasitica lncRNAs and effector proteins, and provide insights into the lncRNA-effector module involved in S. parasitica.
Hydin as the Candidate Master Sex Determination Gene in Channel Catfish (Ictalurus punctatus) and Its Epigenetic Regulation
Liu Z and Gao D
Sex determination is a fascinating area of research. To date, more than 20 master sex determination (SD) genes have been reported from vertebrate animals. With channel catfish (Ictalurus punctatus), much work has been conducted to determine its master SD gene, ranging from genetic linkage mapping, genome-wide association (GWA) analysis, genome sequencing, comparative genome analysis, epigenomic analysis, transcriptome analysis, and functional studies. Here in this mini review, we provide positional, expression, regulatory, and functional evidence supporting hydin (hydrocephalus-inducing protein or HYDIN axonemal central pair apparatus protein-like) as a master SD gene in channel catfish. Hydin is located within the sex determination region (SDR) within a mapped 8.9-Mb non-recombinational segment on chromosome 4 of channel catfish. It is highly expressed in genetic males, but not in genetic females. The alleles of X and Y are highly differentially methylated with the X chromosome being hypermethylated and the Y chromosome hypomethylated. The hypomethylated Y allele of hydin is expressed while the hypermethylated X allele is not expressed. Such allelic expression fits well with the XY sex determination system of channel catfish. Functional analysis using a methylation blocker, 5-aza-dC, demonstrated that demethylation, especially within the SDR, is accompanied with increased expression of hydin, which led to sex reversal of genetic females into phenotypic males. These evidences support the candidacy of hydin as a master SD gene in channel catfish. Future knockout and analysis of affected genes after hydin knockout should provide insights into how hydin functions as a master SD gene.
Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress
Zhang J, Liu Z, Quan J, Lu J, Zhao G and Pan Y
Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.
Long-Read Sequencing Revealing the Effectiveness of Captive Breeding Strategy for Improving the Gut Microbiota of Spotted Seal (Phoca largha)
Du J, Wang Z, Xing Y, Gao X, Lu Z, Li D and Tian J
The spotted seal (Phoca largha) is the sole pinniped species that can reproduce in China and has been classified as the First-Grade State Protection animal. The conventional method for the protection and maintenance of the spotted seal population is the captive maintenance of the species in artificially controlled environments. Nevertheless, the efficacy of the captive strategy remains uncertain, with the potential to impact the health of spotted seals through alterations in gut microbiota. In this study, PacBio sequencing based on the full-length of the bacterial 16S rRNA gene was applied to faeces from captive and wild spotted seals, thereby providing a first reference for the gut microbiota profile of spotted seals at the species scale. The gut microbiota of captive spotted seals was found to be more diverse than that of the wild population. The gut microbiota of spotted seals exhibited notable variation due to captive breeding, with an enrichment of Firmicutes and a reduction in Proteobacteria. The results of the co-occurrence network analysis indicated that the gut microbiota of captive spotted seals exhibited a greater degree of complexity and stability in comparison to that observed in their wild counterparts. The analysis of community assembly mechanisms revealed an increased determinism for the gut microbiota of captive individuals, with a concomitant decrease in the contribution of drift. Furthermore, the results of the predicted functions indicated a reduction in stress responses and an enhanced ability to metabolise sugars in the gut microbiota of captive spotted seals. In conclusion, the results of this study provide evidence that the current captive breeding strategy is an effective approach for improving the gut microbiota of spotted seals. Furthermore, this study demonstrates the potential of monitoring the gut microbiota to assess the health of marine mammals and inform conservation strategies for endangered species.
An Improved RNA Extraction Method for Octocorals and Its Application in Transcriptome Analysis of Dark-Induced Bleaching Octocoral
Wong JM, Liu AC, Lin HT, Shinzato C, Yang SY and Yang SH
Octocorals, vital components of reef ecosystems, inhabit various marine environments across diverse climate zones, spanning from tropical shallows to frigid deep-sea regions. Certain octocoral species, notably Lobophytum and Sinularia, are particularly intriguing due to their production of diverse metabolites, warranting continuous investigation. Although octocorals played the roles in coral ecosystems, the studies are rare in comparison to scleractinian corals, especially in transcriptomic and genomic data. However, RNA extraction was massively interfered by the polysaccharides and secondary metabolites produced from octocoral holobiont. For this purpose, five lysis buffer systems and two extraction processes were examined for the RNA extraction efficiency in octocorals. We found CTAB/10%SDS as a new method for RNA extraction from six different octocoral genera. Furthermore, our new method is enable to extract RNA with good quality for downstream application such as quantitative PCR and RNA sequencing. Finally, comparative transcriptomic analysis between healthy octocorals and those dark-induced bleaching corals in Lobophytum hsiehi revealed extracellular matrix and immunity-related genes may play the important roles in coral-symbiodinium symbiosis. We believe that this study's findings and the developed RNA extraction method will serve as valuable references for future research, particularly in octocorals.
Regulatory Genes in Eyespot Formation and Function of Mytilus coruscus
Xu M, Li J, Li H, Qi P, Ye Y and Yan X
Light sensitivity is important for marine benthic invertebrates, and it plays a vital role in the marine bivalves settling. Animal visual systems are enormously diverse; their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Eyespots, as the simplest animal eyes, their appearance indicates the important effect on mussel larvae attachment. Nevertheless, the molecular mechanism of the eyespot's development in Mytilus coruscus larvae is not clear. In this study, we identified 11 genes which play a regulatory role in the visual system (i.e. Pax1/9, Pax2/5/8, Pax6, Pax3/7, Six1/2, Six3/6, Six4/5, Dach, Eya, Brn and Tbx2) from transcriptome data and the whole genome sequence of M. coruscus. The results of chromosome localization showed that 11 genes were distributed on different chromosomes. Subcellular mapping revealed that all the proteins except Brn were located in the nucleus. Phylogeny and gene structure analyses revealed that the Pax members were divided into four subfamilies, the Six members were divided into three subfamilies and structures within the same subfamily were relatively conserved. Quantitative real-time PCR (qPCR) showed that Dach, Pax6, Pax3/7, Six1/2 and Six4/5 were expressed at high levels during the pediveliger stage. Moreover, Six1/2 and Six4/5 were highly expressed in mantle tissues. Subsequent overall in situ hybridization experiments in the planktonic larval stage revealed that Pax6, Six1/2 and Six4/5 detected signals in the region of the eyespot. Based on these analyses, we suggested that the development of vision in M. coruscus not only depended on the expression pattern of Pax6, but perhaps also related to Six1/2 and Six4/5 in the planktonic larval stage, while Six1/2 and Six4/5 were the dominant genes for visual function in the adult mussel. This study made a comprehensive analysis of the visual function of M. coruscus at the genome level, which helps us to understand the intrinsic mechanism of the visual system of marine bivalves, and also provides a molecular basis for improving the attachment and metamorphosis rate of M. coruscus larvae.
Identification of Key Genes Correlated with Economic Trait Superiorities and Their SNP Screening Through Transcriptome Comparisons, WGCNA and Pearson Correlation Coefficient in the Sea Cucumber Apostichopus Japonicus
Sun J, Wang H, Zhan Y, Zhao T, Li C, Cheng C, Wang Z, Zou A and Chang Y
Variation in morphology-driven economic traits is a common issue hindering the development of the sea cucumber aquaculture industry. In this study, transcriptome comparisons, weighted gene correlation network analysis (WGCNA) and Pearson correlation coefficient (PCC) were first employed to identify key genes correlated with morphological variation in the sea cucumber Apostichopus japonicus, after which the relationship between identified key genes (relative expression and genotype) and economic trait phenotypes was investigated to screen potential biomarker targets for molecular-assisted breeding. The results showed that three genes (putative ficolin-2, fibrinogen c domain-containing protein 1, and angiopoietin-4) were closely associated with economic trait superiorities. Two single nucleotide polymorphisms (SNPs) were identified in the putative ficolin-2 gene as having a strong correlation with body weight and papilla number. The findings from this study will enrich breeding biomarker resources and benefit the development of molecular-assisted breeding techniques in sea cucumber aquaculture.
A Zinc Uptake Transporter ZIP1-II Is Involved in Zinc Accumulation in the Hepatopancreas of Pacific Oyster Crassostrea gigas
Kong N, Luo C, Wang M, Zhao J, Li X, Wang L and Song L
The Pacific oyster Crassostrea gigas is known to have an exceptional ability to accumulate zinc, which endows it with robust resistance to pathogens and makes it an excellent source of dietary zinc. ZIP1 has been identified as an important zinc uptake protein in other species, but its role in oysters remains unclear. In the present study, a ZIP1 homologue (CgZIP1-II) of the Zrt/Irt-like protein (ZIP) family was identified in C. gigas. The mRNA transcripts of CgZIP1-II were constitutively expressed in examined tissues of C. gigas, with higher levels in the hepatopancreas and gill. After zinc exposure, the mRNA transcripts of CgZIP1-II in the hepatopancreas showed a significant decline from 12 h to 14 d, while those in the gill significantly decreased at 72 h, followed by a recovery to basal level at 7 to 14 d. Immunocytochemical analysis revealed that the CgZIP1-II protein was mainly located at the plasma membrane of oyster hemocytes. Compared to the control cells, overexpression of CgZIP1-II in the transfected HEK293 cells resulted in a 2.44-fold (p < 0.05) increase in zinc content after incubation with 100 μM zinc for 24 h. Inhibition of endogenous CgZIP1-II expression with siRNAs led to a 42% reduction in zinc content in the hepatopancreas of oysters. Similarly, in vivo blocking of CgZIP1-II with anti-CgZIP1-II antibody caused a 43% decrease in zinc content in the hepatopancreas. These results collectively indicated that CgZIP1-II functioned as a zinc uptake transporter in C. gigas and played a certain role in zinc accumulation.
Genome-Wide Mapping of Autonomously Replicating Sequences in the Marine Diatom Phaeodactylum tricornutum
Yun HS, Yoneda K, Sugasawa T, Suzuki I and Maeda Y
Autonomously replicating sequences (ARSs) are important accessories in episomal vectors that allow them to be replicated and stably maintained within transformants. Despite their importance, no information on ARSs in diatoms has been reported. Therefore, we attempted to identify ARS candidates in the model diatom, Phaeodactylum tricornutum, via chromatin immunoprecipitation sequencing. In this study, subunits of the origin recognition complex (ORC), ORC2 and ORC4, were used to screen for ARS candidates. ORC2 and ORC4 bound to 355 sites on the P. tricornutum genome, of which 69 were constantly screened after multiple attempts. The screened ARS candidates had an AT-richness of approximately 50% (44.39-52.92%) and did not have conserved sequences. In addition, ARS candidates were distributed randomly but had a dense distribution pattern at several sites. Their positions tended to overlap with those of the genetic region (73.91%). Compared to the ARSs of several other eukaryotic organisms, the characteristics of the screened ARS candidates are complex. Thus, our findings suggest that the diatom has a distinct and unique native ARSs.
SNP Fingerprinting for Germplasm Identification of the Fast-Growing Pacific oyster (Crassostrea gigas) "Haida No. 1" Variety
Zhang Z, Yang B, Ren L, Li Q and Liu S
The Pacific oyster (Crassostrea gigas) is a global aquaculture species of economic significance. Selective breeding programs have been conducted to produce multiple strains with fast growth as well as other desirable traits. However, due to the phenotypic plasticity of oysters, challenges existed for precise germplasm identification among selectively bred strains. In this work, we identified selection signatures of three fast-growing Pacific oyster strains originated from wild populations collected from China, Japan, and Korea, respectively, which were used for development of SNP-based molecular fingerprinting for precise identification of germplasm. We performed whole-genome resequencing of 59 oysters from three selectively bred strains and a wild population for genome-wide SNP analyses. Population structure analysis with these SNPs revealed significant genetic differentiation among the selectively bred strains. Based on the F index, we identified 41, 49, and 36 strain-specific SNPs from the three selectively bred strains. Taking into account the "hitch-hiking effect" that occurs in the genome during positive selection, we identified two, three, and two molecular fingerprints for the three strains, respectively. We validated the molecular fingerprints of the China selectively bred strain (i.e., "Haida No. 1" variety) with a separate population of 42 oysters with diverse genetic background, demonstrating the accuracy of germplasm identification of over 96%. This work provides a reliable tool for precise germplasm identification of the "Haida No. 1" variety as well as other two selectively bred strains, which is valuable in germplasm conservation and breeding design in the C. gigas.
Analysis of Gut Microbiota Associated with WSSV Resistance in Litopenaeus vannamei
Wanna W, Aucharean C and Jaeram N
Microorganisms in the digestive tract regulate the metabolism of host cells as well as stimulate the immune system of the host. If the microbiota is in good balance, it will promote the good health of the host. In this study, using 16S rRNA sequencing, we analyzed the microbiota of three groups of shrimp: a group of normal shrimp (control group), shrimp that were killed by infection with the white spot syndrome virus (WSSV) (susceptible group), and shrimp that survived WSSV infection (resistant group). The results showed that although the alpha diversity of the microbiota was barely affected by the WSSV, the bacterial communities in the three groups had different prevalences. The resistant group harbored significantly more bacteria than both the other groups. Remarkably, the resistant group had the greatest prevalence of the phylum Bacterioidetes, the families Rhodobacteraceae and Flavobacteriaceae, and the genus Nautella, suggesting their potential as biomarkers for shrimp resistance to WSSV infection. In addition, analysis of functional diversity in bacterial communities showed that the abundance of bacterial metagenomes in two groups infected with WSSV was mostly linked to metabolism and cellular processes. The susceptible WSSV group exhibited a significant reduction in amino acid metabolism. This result suggested that metabolism was the principal factor affecting the alteration in the microbiota after WSSV infection. This overview of the gut microbiota of shrimp infected with the WSSV offers crucial insights for aquaculture management and simplifies the use of control strategies in the future.
Transcriptome Analysis Reveals the lncRNA-mRNA Co-expression Network Regulating the Aestivation of Sea Cucumber
Chen X, Han W, Yang R, Zhu X, Li S, Wang Y, Sun X, Li Y, Bao L, Zhang L, Wang S and Wang J
LncRNAs are long non-coding RNAs that are widely recognized as crucial regulators of gene expression and metabolic control, involved in numerous dormancy-related processes. Aestivation is a common hypometabolism strategy of sea cucumber (Apostichopus japonicus) in response to high-temperature conditions and is typically characterized by the degradation of the intestine and respiratory tree. Although the aestivation process has been extensively studied in sea cucumbers, the role of lncRNAs in the context of aestivation states remains a conspicuous knowledge gap. Here, we identified and characterized 14,711 lncRNAs in A. japonicus and analyzed their differential expression patterns during the aestivation process in the intestine and respiratory tree. The results revealed the physiological differences, especially the metabolic processes, between the intestine and respiratory tree during the aestivation. The co-expression network of lncRNA-mRNA suggested the dominant role of lncRNA in regulating the differential response of the intestine and respiratory trees. Differentially co-expressed factors were significantly enriched in the deep-aestivation stage-specific modules. Conserved co-expressed factors included several transcription factors known to be involved in rhythm regulation, such as Klf2 and Egr1. Furthermore, a specific trans-acting lncRNA (lncrna.1393.1) was identified as a potential regulator of Klf2 and Egr1. Overall, the systematic identification, characterization, and expression analysis of lncRNAs in A. japonicus enhanced our knowledge of long non-coding regulation of aestivation in sea cucumber and provided new clues for understanding the common "toolkit" of dormancy regulatory mechanisms.