From Inhibition to Exciting Science
I am lucky to be part of the hippocampus story, if not from the beginning but at least in its formative decades. Being part of this community is a true privilege. As I try to illustrate below, science is made by scientists. My fierce competitors over the years have become my close friends. I hope the field of hippocampus research will stay that way forever.
Hippocampal Discoveries: Spatial View Cells, Connectivity, and Computations for Memory and Navigation, in Primates Including Humans
Two key series of discoveries about the hippocampus are described. One is the discovery of hippocampal spatial view cells in primates. This discovery opens the way to a much better understanding of human episodic memory, for episodic memory prototypically involves a memory of where people or objects or rewards have been seen in locations "out there" which could never be implemented by the place cells that encode the location of a rat or mouse. Further, spatial view cells are valuable for navigation using vision and viewed landmarks, and provide for much richer, vision-based, navigation than the place to place self-motion update performed by rats and mice who live in dark underground tunnels. Spatial view cells thus offer a revolution in our understanding of the functions of the hippocampus in memory and navigation in humans and other primates with well-developed foveate vision. The second discovery describes a computational theory of the hippocampal-neocortical memory system that includes the only quantitative theory of how information is recalled from the hippocampus to the neocortex. It is shown how foundations for this research were the discovery of reward neurons for food reward, and non-reward, in the primate orbitofrontal cortex, and representations of value including of monetary value in the human orbitofrontal cortex; and the discovery of face identity and face expression cells in the primate inferior temporal visual cortex and how they represent transform-invariant information. This research illustrates how in order to understand a brain computation, a whole series of integrated interdisciplinary discoveries is needed to build a theory of the operation of each neural system.
Flexible and Adaptive Behavioral Strategies: A Personal Journey
The ground-breaking research of patient H.M. brought to light the importance of the hippocampus for our memories of everyday and special events. Three quarters of a century of intense neurobiological and neuropsychological research would follow as scientists sought to understand why the hippocampus is such an important memory structure in the brain. Navigating a career during this time required adaptive research strategies as new evidence emerged. Although exciting progress has been made, complex challenges remain.
Unweaving the Cognitive Map: A Personal History
I have been incredibly fortunate to have worked in the field of hippocampal spatial coding during three of its most exciting decades, the 1990s, 2000s, and 2010s. During this time I had a ringside view of some of the foundational discoveries that were made which have transformed our understanding of the hippocampal system and its role in cognition (especially spatial cognition) and memory. These discoveries inspired me in my own lab over the years to pursue three broad lines of enquiry-3D spatial encoding, context and the sense of direction-which are outlined here. If some of my personal recollections are a little inaccurate (such is the nature of episodic memory!) I apologize in advance.
Field EPSPs of Dentate Gyrus Granule Cells Studied by Selective Optogenetic Activation of Hilar Mossy Cells in Hippocampal Slices
Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively. Here we describe methods to selectively activate MC axons in the IML using mice with Cre recombinase expressed in MCs. Slices were made after injecting adeno-associated virus (AAV) encoding channelrhodopsin (ChR2) in the DG. In these slices, we show that fEPSPs could be recorded reliably in the IML in response to optogenetic stimulation of MC axons. Furthermore, fEPSPs were widespread across the septotemporal axis. However, fEPSPs were relatively weak because they were small in amplitude and did not elicit a significant population spike in GCs. They also showed little paired pulse facilitation. We confirmed the extracellular findings with patch clamp recordings of GCs despite different recording chambers and other differences in methods. Together the results provide a simple method for studying MC activation of GCs and add to the evidence that this input is normally weak but widespread across the GC population.
Visual Exploration and the Primate Hippocampal Formation
During the 1990s and early 2000s, research in humans and in the nonhuman primate model of human amnesia revealed that tasks involving free viewing of images provided an exceptionally sensitive measure of recognition memory. Performance on these tasks was sensitive to damage restricted to the hippocampus as well as to damage that included medial temporal lobe cortices. Early work in my laboratory used free-viewing tasks to assess the neurophysiological correlates of recognition memory, and the use of naturalistic visual exploration opened rich avenues to assess other aspects of the impact of eye movements on neural activity in the hippocampus and entorhinal cortex. Here, I summarize two main lines of this work and some of the stories of the trainees who made essential contributions to these discoveries.
Transcranial Direct Current Stimulation Over Bilateral Temporal Lobes Modulates Hippocampal-Occipital Functional Connectivity and Visual Short-Term Memory Precision
Although the medial temporal lobe (MTL) is traditionally considered a region dedicated to long-term memory, recent neuroimaging and intracranial recording evidence suggests that the MTL also contributes to certain aspects of visual short-term memory (VSTM), such as the quality or precision of retained VSTM content. This study aims to further investigate the MTL's role in VSTM precision through the application of transcranial direct current stimulation (tDCS) and functional magnetic resonance imaging (fMRI). Participants underwent 1.5 mA offline tDCS over bilateral temporal lobes using left cathodal and right anodal electrodes, administered for either 20 min (active) or 0.5 min within a 20-min window (sham), in a counterbalanced design. As the electrical current passes through midbrain structures with this bilateral stimulation montage, prior behavioral and modeling evidence suggests that this tDCS protocol can modulate MTL functions. To confirm this and examine its impacts on VSTM, participants completed a VSTM color recall task immediately following tDCS, while undergoing a 20-min fMRI scan and a subsequent 7.5-min resting-state scan, during which they focused on a fixation cross. Behavioral results indicated that this tDCS protocol decreased VSTM precision without significantly affecting overall recall success. Furthermore, psychophysiological interaction analysis revealed that tDCS over the temporal lobe modulated hippocampal-occipital functional connectivity during the VSTM task, despite no main effect on fMRI BOLD activity. Notably, this modulation was also observed during resting-state fMRI 15-20 min post-tDCS, with the magnitude of the effect correlating with participants' behavioral changes in VSTM precision across active and control conditions. Combined, these findings suggest that tDCS over the temporal lobe can modulate the intrinsic functional connectivity between the MTL and visual sensory areas, thereby affecting VSTM precision.
Inhibitory Postsynaptic Potentials Participate in Intracellular and Extracellular Theta Rhythms in the Hippocampus: A Personal Narrative
The hypothesis that the hippocampal theta rhythm consists of inhibitory postsynaptic potentials (IPSPs) was critical for understanding the theta rhythm. The dominant views in the early 1980s were that intracellularly recorded theta consisted of excitatory postsynaptic potentials (EPSPs) with little participation by IPSPs, and that IPSPs generated a closed monopolar field in the hippocampus. I (Leung) conceived of a new model for generation of the hippocampal theta rhythm, with theta-rhythmic IPSPs as an essential component, and thus sought to reinvestigate the relation between theta and IPSPs quantitatively with intracellular and extracellular recordings. The intracellular recordings were performed by Leung and Yim in the laboratory of Kris Krnjević at McGill University. Using protocols of passing steady-state holding currents and injection of chloride ions, the intracellular theta and IPSP in a CA1 neuron typically showed the same reversal potential and correlated change in amplitude. Low-intensity stimulation of the alveus evoked an antidromic action potential in CA1 neurons, identifying them as pyramidal cells with output axons in the alveus, which then activated a feedback IPSP with almost no excitatory component. Theta-rhythmic somatic inhibition, together with phase-shifted theta-rhythmic distal apical dendritic excitation were proposed as the two dipoles that generate a gradual extracellular theta phase shift in the CA1 apical dendritic layer. The distal apical excitation driven by the entorhinal cortex was proposed to be atropine-resistant and dominated during walking in rats. Other than serving a conventional role in limiting excitation, rhythmic proximal inhibition and distal dendritic excitation provide varying phasic modulation along the soma-dendritic axis of pyramidal cells, resulting in theta phase-dependent synaptic plasticity and gamma oscillations, which are likely involved in cognitive processing.
Towards an Understanding of the Dentate Gyrus Hilus
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs). However, mossy cells also targeted local GABAergic neurons. Furthermore, it was not yet clear if mossy cells were glutamatergic or GABAergic. This led to many debates about the role of mossy cells. However, it was clear that hilar neurons, including mossy cells, were likely to have very important functions because they provided strong input to GCs. Hilar neurons also attracted attention in epilepsy because pathological studies showed that hilar neurons were often lost, but GCs remained. Vulnerability of hilar neurons also occurred after traumatic brain injury and ischemia. These observations fueled an interest to understand hilar neurons and protect them, an interest that continues to this day. This article provides a historical and personal perspective into the ways that I sought to contribute to resolving some of the debates and moving the field forward. Despite several technical challenges the outcomes of the studies have been worth the effort with some surprising findings along the way. Given the growing interest in the hilus, and the advent of multiple techniques to selectively manipulate hilar neurons, there is a great opportunity for future research.
Episodic Aspects of a Path Navigated Through Hippocampal Neurobiology
As requested by the editors of this special issue of Hippocampus on Scientific Histories of Hippocampal Research, this review provides a detailed personal perspective and historical background on the research involved in a number of findings. The review includes description of the development of the water maze and its use in providing evidence to support the role of the hippocampus in spatial memory function. The review also describes how the water maze was then used in further work to support the proposal that NMDA-dependent synaptic modification in the hippocampus mediates the encoding of new spatial memories. This personal history gives a perspective on the convergence of different streams of physiological, biochemical, theoretical and behavioral research that resulted in these findings on hippocampal function.
The Anatomy of Context
For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR). In my own lab at Brown University, I continued to study the anatomy of the PER, POR, and entorhinal cortices. I also began to characterize and differentiate the functions of these regions, particularly the newly defined POR and the redefined PER. Our electrophysiological and behavioral evidence supports a view of POR function that aligns with our anatomical evidence. Briefly, the POR integrates object and feature information from the PER with spatial information from the retrosplenial, posterior parietal, and secondary visual cortices and the pulvinar and uses this information to represent specific environmental contexts, including the spatial arrangement of objects and features within each context. In addition to maintaining a representation of the current context, the POR plays an attentional role by continually monitoring the context for changes and updating the context representation when changes occur. This context representation is accessible to other regions for cognitive processes, including binding life events with context to form episodic memories, guiding context-relevant behavior, and recognizing objects within scenes and contexts.
Development of the SPEAR Model: Separate Phases of Encoding and Retrieval Are Necessary for Storing Multiple Overlapping Associative Memories
In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms. The same framework applies to the slower transition between encoding and consolidation dynamics regulated by acetylcholine. The review includes description of the experimental data on acetylcholine and theta rhythm that motivated this model, the realization that existing associative memory models require these different dynamics, and the subsequent experimental data supporting these dynamics. The review also includes discussion of my work on the encoding of episodic memories as spatiotemporal trajectories, and some personal description of the episodic memories from my own spatiotemporal trajectory as I worked on this model.
How Ideas About Context and Remapping Developed in Brooklyn
In 1979, I joined Jim Ranck's group in Brooklyn and began recording hippocampal neurons. The first project was to record single neurons across three behaviors in different chambers: pellet retrieval on a radial-arm maze, bar-pressing for food reward in an operant chamber, and maternal pup-retrieval in a large home box. We found spatial firing in all three chambers, with a single-neuron's firing pattern unpredictable from one chamber to the next. We interpreted the spatial firing patterns as representing "context." Later, in the 1980s, I began collaborating with Bob Muller (and Jim Ranck). In the first of a pair of 1987 papers, we used computerized data acquisition, recorded in simple, reduced environments to demonstrate robust, stable place cell firing and the characteristic features of firing fields. In the second paper we showed that when a rat is transferred from one environment to another, the set of place cells "remaps." "Remapping" was defined later, in a pair of 1990 papers. "Context" was introduced in the early three-behavior experiment but was not discussed in the 1987 papers. What is the true relationship between the biological observation of "remapping" and the psychological concept of "context"? This difficult question is addressed here and in more detail in our recent paper.
Neuronal 'Ensemble' Recording and the Search for the Cell Assembly: A Personal History
This contribution is part of the special issue on the Hippocampus focused on personal histories of advances in knowledge on the hippocampus and related structures. An account is offered of the author's role in the development of neural ensemble recording: stereo recording (stereotrodes, tetrodes) and the use of this approach to search for evidence of Hebb's "cell assemblies" and "phase sequences", the holy grail of the neuroscience of learning and memory.
Abnormal Astrocyte Heterogeneity in the Dentate Gyrus of Rats Prone to Audiogenic Seizures Can Be Corrected by the Nootropic Drug Piracetam
Accumulating evidence indicates that inherited astrocyte dysfunction can be a primary trigger for epilepsy development; however, the available data are rather limited. In addition, astrocytes are considered as a perspective target for the design of novel and improvement of the existing antiepileptic therapy. Piracetam and related nootropic drugs are widely used in the therapy of various epileptic disorders, but detailed mechanisms of racetams action and, in particular, their effects on glial functions are poorly understood. In this study, we explored the functional state of astrocytes in the dentate gyrus (DG) of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures and compared the action of piracetam on the DG astrocytes in KM and normal Wistar rats. Wistar and naïve KM rats which received injections of saline (control) or piracetam (100 mg/kg) for 21 days were recruited in our studies. Comparative analysis of control Wistar and KM rats revealed genetically determined abnormalities in DG astrocytes of KM rats including an increased expression of NFIA but a decreased GFAP, ALDH1L1, EAATs, and glutamine synthetase (GS). Piracetam treatment normalized the expression of all studied markers, except NFIA, in KM rats, while in Wistar rats, it potentiated only GS and NFIA. The results suggested that the nootropic and antiepileptic effects of piracetam may be, at least partially, mediated by the modulation of astroglia functions. In addition, analysis of NFIA and GS colocalization revealed the novel pattern of astrocyte heterogeneity in the DG which was significantly altered in epileptic rats but corrected by piracetam.
Mental Time Travel: A Retrospective
Because imagination activates the same neural circuits used in understanding the present, one can access that imagination even in non-linguistic animals through decoding techniques applied to large neural ensembles. This personal retrospective traces the history of the initial discovery that hippocampal theta sequences sweep forward to goals during moments of deliberation and discusses the history that was necessary to put ourselves in the position to recognize this signal. It also discusses how that discovery fits into the larger picture of hippocampal function and the concept of cognition as computation.
Linking Anxiolytic Action to Hippocampal "Theta"-A Personal History
This paper provides a personal history of work starting with the discovery that anxiolytic drugs reduce hippocampal theta frequency. It includes parallel work on septal elicitation of theta carried out in Jeffrey Gray's laboratory in Oxford; a statement of my original scientific perspective on the work; and a description of later work in my laboratory in New Zealand confirming the function of theta rhythmicity per se and its mediation of the effects of anxiolytic drugs on behavior. I finish with comments on risk management with such experiments and their use in larger scale theory development.
Pursuing Synaptic Plasticity From Cortex to LTP in the Hippocampus
Here I describe how an interest in synaptic plasticity took me from a PhD at McGill, where I worked on activity-dependent plasticity in the responses of single units in the association cortex of anesthetized cats, to a collaboration with Terje Lømo in Per Andersen's laboratory in Oslo in 1968-9. There we followed up on Lømo's discovery of LTP, published as an abstract in 1966, to produce the first detailed description of the phenomenon. Later, in London, Tony Gardner-Medwin and I showed that LTP lasting for days could be obtained in the awake rabbit. The two papers were published together in the Journal of Physiology in 1973. I relate how difficulties in replicating our results in English rabbits, and the failure of the first attempts to obtain LTP in slices of the dentate gyrus, led to my abandoning work on LTP for a few years, returning to the fray in the late 1970s through a collaboration with Graham Goddard at Dalhousie University in Halifax, Canada.
The Discovery of Head Direction Cells: A Personal Account
This article is my recollection of events surrounding the discovery of head direction (HD) cells by Jim Ranck in 1984 and the first journal publications 6 years later. Ranck first described the fundamental properties of HD cells qualitatively in a Society for Neuroscience abstract (1984) and in the proceedings to a conference. Ranck, however, was convinced by Bob Muller, a faculty colleague in the lab, to delay writing up Jim's discovery until they developed a two-spot video tracking system, which would enable proper quantitative analyses. The development of this system was complex and was still undergoing development when I arrived in the Brooklyn lab in 1986. By this time, Jim had begun to refocus his efforts on thinking about the relationship between space and manifolds and was no longer engaged in active research. It thus befell me (unintentionally) to complete the recordings of these fascinating cells. This endeavor involved recording additional HD cells with the new video tracking system, monitoring the cells' responses following a series of environmental manipulations, and performing quantitative analyses on the data. Throughout 1987, I recorded most of the cells that would form the basis for our 1990 papers published in the Journal of Neuroscience. Along the way, there were many events and emotions: luck, excitement, humor, frustration, tutorials, unintended outcomes, and long-lasting friendships. I was guided and supported during this time by both Bob Muller and John Kubie, but remain forever grateful to Jim for this wonderful opportunity.
From British Associationism to the Hippocampal Cognitive Map: A Personal View From a Ringside Seat at the Cognitive/PDP Revolution
The mandate for this special issue of Hippocampus was to provide a few examples of one's own work in a relatively personal context. Accordingly, I will discuss some of my own work here, but will also provide a broader arc of ideas and discoveries within which the efforts of myself and many others have taken place. This history begins with the associationists, who proposed that the human mind could be understood, in part, as a compounding of simple associations between contiguously occurring items and events. This idea was taken up by the behaviorist traditions, which made significant progress toward refining this simple idea. Subsequently, as interest turned toward neural mechanisms, Donald Hebb provided a foundational proposal for how synaptic changes could provide for this associative learning. The associationist view was, however, challenged by gestaltists who took a more wholistic, cognitive approach. Stunning support was provided for Tolman's cognitive map idea with the discovery of place cells in the hippocampus, and the subsequent treatise provided in O'Keefe and Nadel's The Hippocampus as a Cognitive Map. I propose that, ultimately, this associationist versus cognitive debate was settled by the development of the Parallel Distributed Processing (PDP) approach, which incorporated Hebbian synapses into large, neural-like networks, which could accomplish complex cognitive tasks. My own work took place within the framework provided by O'Keefe and Nadel. One aspect of my work followed Jim Ranck's discovery of Head Direction cells. Tad Blair and others in my lab traced a brainstem circuit, which we proposed could explain the origins of the directional code. In other work, I investigated cells in the subicular region. These provided a contrast to the hippocampal place cells in that each subicular cell kept the same spatial pattern across different environments, whereas the hippocampal cells formed a different map for each context.
Scientific Histories of Hippocampal Research: Introduction to the Special Issue
Numerous scientific advances and discoveries have arisen from research on the hippocampal formation. This special issue provides first-person historical descriptions of these advances and discoveries in hippocampal research, written by those directly involved in the research. This is the first section of a special issue that will also include future articles on this topic. Here, we discuss some of the factors that motivated this special issue, and the major themes of hippocampal research that are addressed.