Ozone as a promising method for controlling spp. biofilm in the food industry: a systematic review
This study aimed to evaluate the effectiveness of ozonation in controlling spp. biofilm in the food industry, and present possible parameters influencing this process. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was conducted in the PubMed, EMBASE, ScienceDirect, and Scopus databases. Eleven articles published between 1993 and 2023 were included in the study, indicating that the topic has been under investigation for several decades, gaining more prominence in recent years. Studies have demonstrated the antimicrobial effect of ozone under different experimental conditions, indicating that it is an effective strategy. Furthermore, they suggest that, in addition to ozone concentration and exposure time, other parameters such as the type of materials used in processing plants, hydrodynamic conditions, water temperature, and knowledge of commonly found microorganisms contribute to the effectiveness of the process aimed at reducing microbial counts. In conclusion, the available evidence suggests that ozonation in controlling spp. can be considered a promising antimicrobial strategy. More efforts are needed to adapt the different methodologies according to each industrial reality.
Carvacrol incorporation into novel controlled-release mucoadhesive systems for oral polymicrobial biofilm control
The aim of this study was to evaluate carvacrol antimicrobial activity in polymicrobial biofilms using a novel controlled-release mucoadhesive systems developed from biopolymers. The natural polymers gellan gum and sodium alginate were used in different concentrations for the development of films, tablets and microparticles containing carvacrol. The systems were characterized as regard their morphological characteristics, carvacrol release and mucoadhesion. Furthermore, the antimicrobial activity of the systems was evaluated on polymicrobial biofilms through biomass quantification and microbial viability assessment. Carvacrol release profile from films, tablets and microparticles was similar; nearly 100% of the carvacrol was released within 15 min. Films showed the best mucoadhesion values. Scanning Electron Microscopy images showed that the films presented a continuous and smooth surface, and the tablets showed a continuous surface with a polymer web appearance. The microparticles were spherical in shape. The films containing carvacrol showed the highest biomass and microbial viability reduction, followed by the tablets. The findings of this study showed that carvacrol incorporated into films and tablets presented antimicrobial activity on polymicrobial biofilm. Controlled-release mucoadhesive systems is a process little explored in dentistry, being the differential of this work, and with great innovative potential for the management of dental diseases.
Cuminaldehyde in combination with tetracycline shows promising antibiofilm activity against drug-resistant
, an opportunistic pathogen often causes biofilm-linked infections. A combinatorial approach involving tetracycline (antibiotic) and cuminaldehyde (phytochemical) was explored to combat this infectious pathogen. The results showed that both tetracycline and cuminaldehyde individually demonstrated antibacterial effects. However, when the compounds were applied together, there was a significant increase in their antimicrobial potential. The determined fractional inhibitory concentration index of 0.43 indicated a synergistic interaction between the two compounds. Furthermore, a series of experiments demonstrated that the combined application of cuminaldehyde and tetracycline could lead to a significant enhancement of their antibiofilm potential. This enhanced antibiofilm potential was attributed to the accumulation of reactive oxygen species and increased cell membrane permeability. Besides, this combinatorial application reduced the secretion of various virulence factors from . Therefore, this combined approach holds promise for effectively treating biofilms.
Chemotaxis gene of a bacterium impacts larval settlement and metamorphosis in the marine mussel via c-di-GMP controlling extracellular protein production
Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene resulted in reduced motility of , accompanied by an increase in c-di-GMP content. The Δ strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the Δ strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of Δ was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.
Assessment of antibiotics removal and transformation products by -assisted biomass in a UASB reactor treating pharmaceutical effluents
The dried roots of an aquatic plant ( commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L, respectively) regardless of addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of , no positive impact against TPs formation was observed.
The microbial communities of the rust layer were influenced by seawater microbial communities
To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of , , and bacteria, as well as fungi, were overrepresented in the rust layer, along with the and bacteria in seawater, and , , and bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.
Dry biofilms on polystyrene surfaces: the role of oxidative treatments for their mitigation
and are associated with a wide range of infections, as they exhibit multidrug resistance - a growing health concern. In this study, gaseous ozone, and ultraviolet-C (UVC) radiation are applied as infection control measures to inactivate dry biofilms of these organisms on polystyrene surfaces. The dosages utilised herein are 1000 and 3000 ppm.min for ozone and 2864 and 11592 mJ.cm for UVC. Both organisms showed an increased sensitivity to UVC relative to ozone exposure in a bespoke decontamination chamber. While complete inactivation of both organisms (>7.5 CFU log) was realized after 60 mins of UVC application, this could not be achieved with ozonation for the same duration. However, a combined application of ozone and UVC yielded complete inactivation in only 20 mins. For both treatment methods, it was observed that dry biofilms of were more difficult to inactivate than dry biofilms of . Compared to dry biofilms of , micrographs of wet biofilms revealed the presence of an abundance of extracellular material after treatments. Interestingly, wet biofilms were more difficult to inactivate than dry biofilms. These insights are crucial to preventing recalcitrant and recurrent infections contact with contaminated polymeric surfaces.
Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization
This study compared the influence of growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilms and enamel demineralization. Biofilms grown in sucrose-supplemented modified McBain medium, containing 25/50 mmol/L PIPES (buffer), under anaerobiosis/microaerophilia, for 3 and 7 days were evaluated for their acidogenicity, microbial composition, matrix, and enamel mineral content. The viability of total lactobacilli was higher in the group containing 25 mmol/L PIPES grown under anaerobiosis, which also showed lower pH values. The viability of total streptococci and total microorganisms was significantly higher at 7 days in the groups with 50 mmol/L PIPES than at 3 days, regardless of the incubation atmosphere. No significant differences were observed in lactic acid, calcium, superficial hardness loss, or lesion depth. In conclusion, the incubation atmosphere, buffer content in the growth media, and duration of biofilm formation displayed species-varied influence on microcosm biofilms, without causing significant changes in acid metabolism or enamel demineralization.
Impact of hydrophobic and hydrophilic surface properties on adhesion in materials used in mineral water wells
Microbiologically contaminated water is a significant source of infections in humans and animals, with (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO (sulfate ions), Cl (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO, and Cl concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.
Modulating effects of fodder grasses extracts on antibiotic sensitivity and biofilm production in avian pathogenic strains
Extracts of certain fodder grasses may be viewed as powerful agents against infections induced by avian pathogenic strains. Here we demonstrated ability of and extracts, alone or in combination with antibiotics, to inhibit growth, viability and biofilm formation in avian pathogenic strains with different sensitivity to antibiotics and non-pathogenic laboratory strain BW25113 as well as its mutant derivatives. Modulation of motility and production of extracellular structures in the presence of the extracts correlated with their anti-biofilm effects. Interestingly, an increase in antibacterial action of kanamycin, streptomycin, ciprofloxacin, and cefotaxime on both biofilms and planktonic cultures of the studied strains was observed in the presence of the extracts, including antibiotic resistant APEC strain #45. The extracts alone showed weak prooxidant activity which could contribute to modification of redox-sensitive sites of various regulatory circuits, resulting to synergetic effects in combination with antibiotics.
A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces
Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.
fractions decrease planktonic cells and biofilms of and
Extracts of species have been shown to reduce biofilms, demonstrating their antimicrobial effects. The extracts can be fractionated to optimize their potential. In this study, we evaluated the antimicrobial activity of fractions against planktonic cells and biofilms of and . Four fractions were prepared: 100% hexane, acetate/hexane 1:1, 100% ethyl acetate, and water. The effect of the fractions on planktonic cells was assessed by counting the colony-forming units per milliliter (CFU/mL). Biofilm tests included CFU/mL, cell metabolic activity, and qualitative analysis using confocal laser scanning microscopy (CLSM). Results were analyzed by the Mann-Whitney U test (α = 0.05). The fractions contained lipophilic constituents, styrylpyrones, glycosylated flavonoids, and alkaloids. Acetate/hexane (1:1) and 100% ethyl acetate fractions reduced the CFU/mL of planktonic fractions did not affect planktonic . For biofilms, the fractions reduced the CFU/mL (from 2-5 logs) and cell metabolic activity (approximately 80% reduction in a single-species biofilm). CLSM showed the fractions reduced microorganism viability and damaged the extracellular matrix of biofilms. We conclude that the acetate/hexane 1:1 and 100% ethyl acetate fractions exhibit antimicrobial effects against biofilms.
Diversity and structure of epibenthic communities across subtidal artificial hard habitats in the Bay of Cherbourg (English Channel)
To inform the performance of ecological engineering designs for artificial structures at sea, it is essential to characterise their impacts on the epibenthic communities colonising them. In this context, the present study aims to compare the community structure among natural and four different artificial hard habitats with different ages and features installed in the Bay of Cherbourg (English Channel): ) cinder blocks and ) boulders, both installed six years prior to the study, and ) smooth and ) rugous concrete dykes, both installed one year prior to this study. Results showed that artificial habitats installed six years ago harboured communities with functional and taxonomic diversity characteristic of mature communities but were still different from those of natural habitat. Conversely, the two dyke habitats installed one year prior to this study presented a poorly diversified community dominated by opportunistic taxa. Furthermore, while the concrete used for the two dyke habitats presented different rugosity properties, both habitats supported similar communities, suggesting that such eco-engineering measures did not affect the settlement of early colonisers. Overall, this study highlights the need for long-term monitoring to comprehensively evaluate epibenthic colonisation of artificial structures.
Long term durability of Tc-bulk and Tc-coatings in various environmental conditions
Technetium metal is renowned for its inertness in environmental conditions, rendering it an optimal candidate for use as a container material for high-level radioactive waste. Alternatively, thin technetium electroplated coatings can be employed to prevent corrosion of steel containers and the subsequent biofouling that may result. The utilization of metallic technetium in the design of containers for radioactive waste in deep burial may be promising from two perspectives: firstly, in terms of increasing their stability, and secondly, in terms of the utilization of technetium, which is a macrocomponent of radioactive waste. In this study, the resilience of the metal technetium and its two derivative coatings (amorphous and crystalline) was assessed under various conditions, including exposure to fresh groundwater and seawater. The multifunctional strain DCB-2-1, known for its ability to enzymatically reduce pertechnetate ions, was used to investigate the possibility of microbial biofouling of metallic technetium. Laboratory experiments have demonstrated that amorphous electrodeposited technetium is more susceptible to oxidation processes compared to its crystalline counterpart. Ultimately, the most durable form of technetium was metal foil. The potential for biofouling on Tc surfaces is largely attributed to the diverse nature of the specimens' surface. Research conducted in the Barents Sea has revealed that the accumulation of iron, calcium, and magnesium mineral phases within the microbial biofilm may shield beta radiation, resulting in the establishment of macro-fouling ( and ).
Hydrodynamic frictional performance of fouled panels: a comparative study of different coating types
This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.
Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against biofilms
is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of . Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against biofilms.
Repurposing simvastatin for treatment of infections: and study
Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.
Effect of (FAD) on corrosion of pipeline welded joint
The impact of (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH redox feedback cycle.
A comparison of the biofouling potential of field-collected and laboratory-cultured
The marine algae spp. are commonly used as model biofouling organisms. As biofouling studies are primarily conducted using field-collected specimens, factors including species identity, seasonal availability, and physiological status can hinder the replicability of the results. To address these limitations, a protocol was developed for the on-demand laboratory culture and release of zoospores. The biofouling potential of laboratory-cultured and field-collected blades was compared using a waterjet. No significant differences were found between field and laboratory-cultured samples in either spore adhesion (before waterjet) or the proportion of spores retained after waterjet exposure. However, there was significant variability within each session type in pre- and post-waterjet exposures, indicating that spore adhesion and retention levels vary significantly among trial runs. In addition, all our laboratory cultures were Clade C (LPP complex). In contrast, our field samples contained a mix of Clade C, clade I, and Clade D. This protocol for on-demand production of spores can improve biofouling research approaches, enables comparison of results across laboratories and regions, and accelerate the development of anti-biofouling strategies.
Microbiological indicators of the biofilms microparticles of quartz sand and polypropylene after short-term exposure in soil
The purpose of this study was to investigate dynamics of biofilm biomass on microparticles of natural material quartz sand and the artificial material polypropylene (plastisphere) as well as change in biofilm-forming microorganisms' number under a short-term field study. In this study microparticles of polypropylene and quartz sand ranging in size from 3 to 5 mm were used. The total microbial count and the number of sulfate-reducing bacteria in the biofilm (by traditional culture-based microbiological methods) and the biofilm biomass (by the method with the crystal violet) were investigated. According to the determined microbiological indicators, over time (90 days) on the polypropylene it was observed decreasing of both the number of studied groups of microorganisms and the formation of a microbial biofilm, compared to the quartz sand. Determination of microbiological indicators of the materials surface allows understanding the aspects of their preservation/removal from the environment and requires additional research.
Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.