Transfer learning for the efficient detection of COVID-19 from smartphone audio data
Disease detection from smartphone data represents an open research challenge in mobile health (m-health) systems. COVID-19 and its respiratory symptoms are an important case study in this area and their early detection is a potential real instrument to counteract the pandemic situation. The efficacy of this solution mainly depends on the performances of AI algorithms applied to the collected data and their possible implementation directly on the users' mobile devices. Considering these issues, and the limited amount of available data, in this paper we present the experimental evaluation of 3 different deep learning models, compared also with hand-crafted features, and of two main approaches of transfer learning in the considered scenario: both feature extraction and fine-tuning. Specifically, we considered VGGish, YAMNET, and L-Net (including 12 different configurations) evaluated through user-independent experiments on 4 different datasets (13,447 samples in total). Results clearly show the advantages of L-Net in all the experimental settings as it overcomes the other solutions by 12.3% in terms of Precision-Recall AUC as features extractor, and by 10% when the model is fine-tuned. Moreover, we note that to fine-tune only the fully-connected layers of the pre-trained models generally leads to worse performances, with an average drop of 6.6% with respect to feature extraction. Finally, we evaluate the memory footprints of the different models for their possible applications on commercial mobile devices.
Multi-task learning neural networks for breath sound detection and classification in pervasive healthcare
With the emergence of many grave Chronic obstructive pulmonary diseases (COPDs) and the COVID-19 pandemic, there is a need for timely detection of abnormal respiratory sounds, such as deep and heavy breaths. Although numerous efficient pervasive healthcare systems have been proposed for tracking patients, few studies have focused on these breaths. This paper presents a method that supports physicians in monitoring in-hospital and at-home patients by monitoring their breath. The proposed method is based on three deep neural networks in audio analysis: RNNoise for noise suppression, SincNet - Convolutional Neural Network, and Residual Bidirectional Long Short-Term Memory for breath sound analysis at edge devices and centralized servers, respectively. We also developed a pervasive system with two configurations: (i) an edge architecture for in-hospital patients; and (ii) a central architecture for at-home ones. Furthermore, a dataset, named BreathSet, was collected from 27 COPD patients being treated at three hospitals in Vietnam to verify our proposed method. The experimental results demonstrated that our system efficiently detected and classified breath sounds with F1-scores of 90% and 91% for the tiny model version on low-cost edge devices, and 90% and 95% for the full model version on central servers, respectively. The proposed system was successfully implemented at hospitals to help physicians in monitoring respiratory patients in real time.
Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE)
During the COVID-19 pandemic, contact tracing apps based on the Bluetooth Low Energy (BLE) technology found in smartphones have been deployed by multiple countries despite BLE's debatable performance for determining close contacts among users. Current solutions estimate proximity based on a single feature: the mean attenuation of the BLE signal. In this context, a new generation of these apps which better exploits data from the BLE signal and other sensors available on phones can be fostered. Collected data can be used to extract multiple features that feed machine learning models which can potentially improve the accuracy of today's solutions. In this work, we consider the use of machine learning models to evaluate different feature sets that can be extracted from the received BLE signal, and assess the performance gain as more features are introduced in these models. Since indoor conditions have a strong impact in assessing the risk of being exposed to the SARS-CoV-2, we analyze the environment (indoor or outdoor) role in these models, aiming at understanding the need for apps that could increase proximity accuracy if aware of its environment. Results show that a better accuracy can be obtained in outdoor locations with respect to indoor ones, and that indoor proximity estimation can benefit more from the introduction of more features with respect to the outdoor estimation case. Accuracy can be increased about 10% when multiple features are considered if the device is aware of its environment, reaching a performance of up to 83% in indoor spaces and up to 91% in outdoor ones. These results encourage future contact tracing apps to integrate this awareness not only to better assess the associated risk of a given environment but also to improve the proximity accuracy for detecting close contacts.
Is blockchain for Internet of Medical Things a panacea for COVID-19 pandemic?
The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.
What makes people install a COVID-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention
Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this paper, we present a national-scale survey experiment ( ) in the U.S. to investigate the effects of app design choices and individual differences on COVID-19 contact-tracing app adoption intentions. We found that individual differences such as prosocialness, COVID-19 risk perceptions, general privacy concerns, technology readiness, and demographic factors played a more important role than app design choices such as decentralized design vs. centralized design, location use, app providers, and the presentation of security risks. Certain app designs could exacerbate the different preferences in different sub-populations which may lead to an inequality of acceptance to certain app design choices (e.g., developed by state health authorities vs. a large tech company) among different groups of people (e.g., people living in rural areas vs. people living in urban areas). Our mediation analysis showed that one's perception of the public health benefits offered by the app and the adoption willingness of other people had a larger effect in explaining the observed effects of app design choices and individual differences than one's perception of the app's security and privacy risks. With these findings, we discuss practical implications on the design, marketing, and deployment of COVID-19 contact-tracing apps in the U.S.
A priority-aware lightweight secure sensing model for body area networks with clinical healthcare applications in Internet of Things
In this study, a priority-aware lightweight secure sensing model for body area networks with clinical healthcare applications in internet of things is proposed. In this model, patients' data is labeled according to the proposed prioritizing mechanism. This provides a prioritized and delay-less service in the server side for the patients with critical conditions. In the proposed model, the sensed data is monitored in a real time way to calculate its sparsity level. Then, the ,calculated sparsity level is used to determine the number of required measurements for data sampling. This allows to sample the data with the number of measurements proportional to the sparsity level and information content of the data. Moreover, the particular design of the measurement matrix causes the aggregated data to be encrypted and its security be guaranteed. Simulation results show that compared to its counterpart schemes, the proposed sensing model not only provides security but also reduces the average energy consumption of the sensor nodes and the average packet delivery delay. This improvement originates from the reduction of the number of required bits for transferring the sensed data and is due to the consideration of the information content and sparsity level variation in the sensed data.
Sensing social interactions through BLE beacons and commercial mobile devices
Wearable sensing devices can provide high-resolution data useful to characterise and identify complex human behaviours. Sensing human social interactions through wearable devices represents one of the emerging field in mobile social sensing, considering their impact on different user categories and on different social contexts. However, it is important to limit the collection and use of sensitive information characterising individual users and their social interactions in order to maintain the user compliance. For this reason, we decided to focus mainly on physical proximity and, specifically, on the analysis of BLE wireless signals commonly used by commercial mobile devices. In this work, we present the SocializeME framework designed to collect proximity information and to detect social interactions through heterogeneous personal mobile devices. We also present the results of an experimental data collection campaign conducted with real users, highlighting technical limitations and performances in terms of quality of RSS, packet loss, and channel symmetry, and how they are influenced by different configurations of the user's body and the position of the personal device. Specifically, we obtained a dataset with more than 820.000 Bluetooth signals (BLE beacons) collected, with a total monitoring of over 11 h. The dataset collected reproduces 4 different configurations by mixing two user posture's layouts (standing and sitting) and different positions of the receiver device (in hand, in the front pocket and in the back pocket). The large number of experiments in those different configurations, well cover the common way of holding a mobile device, and the layout of a dyad involved in a social interaction. We also present the results obtained by SME-D algorithm, designed to automatically detect social interactions based on the collected wireless signals, which obtained an overall accuracy of 81.56% and F-score 84.7%. The collected and labelled dataset is also released to the mobile social sensing community in order to evaluate and compare new algorithms.
Forecasting Occurrences of Activities
While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.
Improving Biomedical Signal Search Results in Big Data Case-Based Reasoning Environments
Time series subsequence matching has importance in a variety of areas in healthcare informatics. These include case-based diagnosis and treatment as well as discovery of trends among patients. However, few medical systems employ subsequence matching due to high computational and memory complexities. This manuscript proposes a randomized Monte Carlo sampling method to broaden search criteria with minimal increases in computational and memory complexities over -NN indexing. Information gain improves while producing result sets that approximate the theoretical result space, query results increase by several orders of magnitude, and recall is improved with no signi cant degradation to precision over -NN matching.
Modeling Patterns of Activities using Activity Curves
Pervasive computing offers an unprecedented opportunity to unobtrusively monitor behavior and use the large amount of collected data to perform analysis of activity-based behavioral patterns. In this paper, we introduce the notion of an , which represents an abstraction of an individual's normal daily routine based on automatically-recognized activities. We propose methods to detect changes in behavioral routines by comparing activity curves and use these changes to analyze the possibility of changes in cognitive or physical health. We demonstrate our model and evaluate our change detection approach using a longitudinal smart home sensor dataset collected from 18 smart homes with older adult residents. Finally, we demonstrate how big data-based pervasive analytics such as activity curve-based change detection can be used to perform functional health assessment. Our evaluation indicates that correlations do exist between behavior and health changes and that these changes can be automatically detected using smart homes, machine learning, and big data-based pervasive analytics.
Accelerometry-based Recognition of the Placement Sites of a Wearable Sensor
This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body: ankle, thigh, hip, arm and wrist from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.
Activity Recognition on Streaming Sensor Data
Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
Accelerometer-based on-body sensor localization for health and medical monitoring applications
In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user's body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed.
Context Awareness in a Handheld Exercise Agent
Work towards the development of a handheld health counseling agent designed to promote physical activity is described. Previous work on automated health counselors is discussed, along with the affordances of mobility and context awareness for health behavior interventions. We present a general-purpose software architecture for the rapid design and deployment of mobile health counseling agents. We also describe the results of an initial field trial in which such a mobile agent plays the role of an exercise coach designed to motivate users to walk more. Results were mixed. We found that the context awareness mechanism that was implemented for detecting walking led to greater user-agent social bonding, but less walking in study participants.