Correction: Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes
Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.
Ectomycorrhizal fungal community response to warming and rainfall reduction differs between co-occurring temperate-boreal ecotonal Pinus saplings
Understanding the responses of ectomycorrhizal (ECM) fungi and their tree hosts to warming and reduced soil water availability under realistic future climate scenarios is essential, yet few studies have investigated how combined global change stressors impact ECM fungal community richness and composition as well as host performance. In this study, we leveraged a long-term factorial warming (ambient, + 1.7 ºC, + 3.2 ºC) and rainfall reduction (ambient, 30% reduced rainfall) experiment in northern Minnesota, USA to investigate the responses of two congeneric hosts with varying drought tolerances and their associated ECM fungal communities to a gradient of soil moisture induced by a combination of warming and rainfall reduction. Soil drying had host-specific effects; the less drought tolerant Pinus strobus had decreased stem growth and lower ECM fungal community richness (fewer ECM fungal Operational Taxonomic Units, OTUs), while the more drought tolerant Pinus banksiana experienced no decline in stem growth but had an altered ECM fungal community composition under drier, warmer soils. Taken together, the results of this study suggest that the combined effects of warming and decreased precipitation will largely be additive in terms of their impact on host performance and ECM fungal community richness, but that drier and warmer soil conditions may also differentially impact specific ECM fungal genera independently of host performance.
Contribution of mycorrhizal symbiosis and root strategy to red clover aboveground biomass under nitrogen addition and phosphorus distribution
Soil nutrients exhibit heterogeneity in their spatial distribution, presenting challenges to plant acquisition. Notably, phosphorus (P) heterogeneity is a characteristic feature of soil, necessitating the development of adaptive strategies by plants to cope with this phenomenon. To address this, fully crossed three-factor experiments were conducted using red clover within rhizoboxes. Positions of P in three conditions, included P even distribution (even P), P close distribution (close P), and P far distribution (far P). Concurrently, N addition was two amounts(0 and 20 mg kg), both with and without AMF inoculation. The findings indicated a decrease in aboveground biomass attributable to uneven P distribution, whereas N and AMF demonstrated the potential to affect aboveground biomass. In a structural equation model, AMF primarily increased aboveground biomass by enhancing nodule number and specific leaf area (SLA). In contrast, N addition improved aboveground biomass through increased nodule number or direct effects. Subsequently, a random forest model indicated that under the far P treatment, fine root length emerged as the primary factor affecting aboveground biomass, followed by thickest root length. Conversely, in the even P treatment, the thickest root length was of paramount importance. In summary, when confronted with uneven P distribution, clover plants adopted various root foraging strategies. AMF played a pivotal role in elevating nodule number, and SLA.
Variations in the root mycobiome and mycorrhizal fungi between different types of Vanilla forest farms on Réunion Island
The mycorrhizal fungi of cultivated Vanilla spp. have mainly been studied in America, while a recent study has investigated them on Réunion Island (Indian Ocean). However, there are many different types of cultivation on Réunion, from shade-house crops to forest farms of endemic or exotic trees. Here we fill a gap in the study of the root mycobiome of Vanilla by sampling vines in forest plantations on recent lava flows in the southeast of Réunion. Specifically, we aimed to characterize the fungal communities between terrestrial and epiphytic roots, between forest farms that differ mainly in the species of trees, and between Vanilla roots and ECM-like roots of nearby trees. By sequencing fungal ITS2, we showed that the Vanilla root mycobiome is diverse and differed between the root types and forest farms. Epiphytic and terrestrial roots host endophytic fungi, while a putative rust with visible urediniospores was abundant in terrestrial roots mainly. Other pathogens were detected in epiphytic roots (Colletotrichum) with no sign of disease. Following sequencing and electron microscopy, Tulasnellaceae, characterized by imperforate parenthesomes and cell wall expansion with an amorphous matrix, were shown to be the main mycorrhizal fungi in both vanilla root types. Interestingly, the dominant Tulasnellaceae OTU was found in ECM-type roots of trees belonging to the ectomycorrhizal family Sapotaceae. Further observations are needed to confirm the ectomycorrhizal association of endemic trees with Tulasnella. Moreover, labeling experiments will be instrumental in investigating the transfer of nutrients between the trees and the Vanilla through the network of mycorrhizal associations in the soil.
Ectomycorrhizal fungal communities associated with Crocanthemum and Lechea (Cistaceae) in subtropical Florida sandhill habitats
Cistaceae are shrubs, subshrubs and herbs that often occur in stressful, fire-prone or disturbed environments and form ectomycorrhizal (ECM) associations with symbiotic fungi. Although some Cistaceae are long-lived shrubs that grow to significant size, others are herbaceous annuals or short-lived plants. Thus, Cistaceae are atypical ECM hosts that are fundamentally different in their biology from trees that are the more typically studied ECM hosts. The Mediterranean region is the center of diversity for Cistaceae and the ectomycorrhizal fungi associated with Cistaceae hosts have primarily been studied in Europe, North Africa, and the Middle East. Mediterranean Cistaceae often host diverse communities of ECM fungi, but they also act as hosts for some ECM fungi that putatively show host-specificity or strong host preference for Cistaceae (including species of Delastria, Hebeloma, Terfezia, and Tirmania). The ECM associations of Cistaceae in North America, however, remain highly understudied. Here we use fungal DNA metabarcoding to document the ectomycorrhizal fungal communities associated with Crocanthemum and Lechea (Cistaceae) in open, fire-prone sandhill habitats in north Florida. At each site we also sampled nearby Pinus to determine whether small, herbaceous Cistaceae have specialized ECM fungi or whether they share their ECM fungal community with nearby pines. The ECM communities of Florida Cistaceae are dominated by Cenococcum (Ascomycota) and Russula (Basidiomycota) species but were also significantly associated with Delastria, an understudied genus of mostly truffle-like Pezizales (Ascomycota). Although many Cistaceae ECM fungi were shared with neighboring pines, the ECM communities with Cistaceae were nonetheless significantly different than those of pines.
Specialized protist communities on mycorrhizal fungal hyphae
Arbuscular mycorrhizal (AM) fungi not only play a crucial role in acquiring nutrients for plants but also serve as a habitat for soil microbes. Recent studies observed that AM fungal hyphae are colonized by specific bacterial communities. However, so far it has not been explored whether fungal hyphae and mycorrhizal networks also harbor specific communities of protists, a key group of microbes in the soil microbiome. Here, we characterized protist communities in soil in a compartment with plant roots and on hyphae collected from hyphal compartments without plant roots. We detected specific protist communities on fungal hyphae. Fourteen protistan amplicon sequences variants (ASVs) were significantly associated with fungal hyphae, half of which belonged to the Cercozoa group. This research, for the first-time detected specific protist ASVs directly associated with abundant AM fungus hyphae, highlighting the complexity of the hyphal food web.
The systemic herbicide glyphosate affects the sporulation dynamics of Rhizophagus species more severely than mechanical defoliation or the contact herbicide diquat
Arbuscular mycorrhizal fungi (AMF) are totally dependent on a suitable host plant for their carbon resources. Here, we investigated under in vitro conditions, the impact of defoliation practices, i.e., mechanical defoliation or chemical defoliation with a contact herbicide (Reglone®, containing the active ingredient diquat) or systemic herbicide (RoundUp®, containing the active ingredient glyphosate), on the dynamics of spore production of Rhizophagus irregularis and Rhizophagus intraradices associated with Solanum tuberosum and/or Medicago truncatula. Glyphosate affected the spore production rate more rapidly and severely than diquat or mechanical defoliation. We hypothesize that this effect was related to disruption of the C metabolism in the whole plant combined with a possible direct effect of glyphosate on the fungus within the roots and/or perhaps in soil via the release of this active ingredient from decaying roots. No glyphosate could be detected in the roots due to technical constraints, while its release from the roots in the medium corresponded to 0.11% of the active ingredient applied to the leaves. The three defoliation practices strongly affected root colonization, compared to the non-defoliated plants. However, the amount of glyphosate released into the medium did not affect spore germination and germ tube growth. These results suggest that the effects of defoliation on the dynamics of spore production are mainly indirect via an impact on the plant, and that the effect is faster and more marked with the glyphosate-formulation, possibly via a direct effect on the fungus in the roots and more unlikely on spore germination.
Arbuscular mycorrhizal fungal spore communities and co-occurrence networks demonstrate host-specific variation throughout the growing season
Microbial community assembly involves a series of ecological filtering mechanisms that determine the composition of microbial communities. While the importance of both broad and local level factors on microbial communities has been reasonably well studied, this work often is limited to single observations and neglects to consider how communities change over time (i.e., seasonal variation). Because seasonal variation is an important determinant of community assembly and determines the relative importance of community assembly filters, this represents a key knowledge gap. Due to their close associations with seasonal variation in plant growth and fitness, arbuscular mycorrhizal (AM) fungi are useful groups for assessing the importance of seasonal dynamics in microbial community assembly. We tested how seasonal variation (spring vs. summer), plant life history stage (vegetative vs. flowering), and host plant species (Baptisia bracteata var. leucophaea & Andropogon gerardii) influenced AM fungal spore community assembly. AM fungal spore community temporal dynamics were closely linked to plant host species and life history stage. While AM fungal spore communities demonstrated strong turnover between the spring (e.g., higher sporulation) and late summer (e.g., higher diversity), the strength and direction of these changes was modified by host plant species. Here we demonstrate the importance of considering temporal variation in microbial community assembly, and also show how plant-microbe interactions can modify seasonal trends in microbial community dynamics.
Coordinated influence of Funneliformis mosseae and different plant growth-promoting bacteria on growth, root functional traits, and nutrient acquisition by maize
Rhizospheric interactions among plant roots, arbuscular mycorrhizal fungi, and plant growth-promoting bacteria (PGPB) can enhance plant health by promoting nutrient acquisition and stimulating the plant immune system. This pot experiment, conducted in autoclaved soil, explored the synergistic impacts of the arbuscular mycorrhizal fungus Funneliformis mosseae with four individual bacterial strains, viz.: Cronobacter sp. Rz-7, Serratia sp. 5-D, Pseudomonas sp. ER-20 and Stenotrophomonas sp. RI-4 A on maize growth, root functional traits, root exudates, root colonization, and nutrient uptake. The comprehensive biochemical characterization of these bacterial strains includes assessments of mineral nutrient solubilization, plant hormone production, and drought tolerance. The results showed that all single and interactive treatments of the mycorrhizal fungus and bacterial strains improved maize growth, as compared with the control (no fungus or PGPB). Among single treatments, the application of the mycorrhizal fungus was more effective than the bacterial strains in stimulating maize growth. Within the bacterial treatments, Serratia sp. 5-D and Pseudomonas sp. ER-20 were more effective in enhancing maize growth than Cronobacter sp. Rz-7 and Stenotrophomonas sp. RI-4 A. All bacterial strains were compatible with Funneliformis mosseae to improve root colonization and maize growth. However, the interaction of mycorrhiza and Serratia sp. 5-D (M + 5-D) was the most prominent for maize growth improvement comparatively to all other treatments. We observed that bacterial strains directly enhanced maize growth while indirectly promoting biomass accumulation by facilitating increased mycorrhizal colonization, indicating that these bacteria acted as mycorrhizal helper bacteria.
Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress
Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.
Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of N to the plants than the passive transfer of N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.
Exploring mycorrhizal diversity in sympatric mycoheterotrophic plants: a comparative study of Monotropastrum humile var. humile and M. humile var. glaberrimum
Mycoheterotrophic plants (MHPs) rely on their mycorrhizal fungus for carbon and nutrient supply, thus a shift in mycobionts may play a crucial role in speciation. This study aims to explore the mycorrhizal diversity of two closely related and sympatric fully MHPs, Monotropastrum humile var. humile (Mhh) and M. humile var. glaberrimum (Mhg), and determine their mycorrhizal associations. A total of 1,108,710 and 1,119,071 ectomycorrhizal fungal reads were obtained from 31 Mhh and 31 Mhg, and these were finally assigned to 227 and 202 operational taxonomic units, respectively. Results show that sympatric Mhh and Mhg are predominantly associated with different fungal genera in Russulaceae. Mhh is consistently associated with members of Russula, whereas Mhg is associated with members of Lactarius. Associating with different mycobionts and limited sharing of fungal partners might reduce the competition and contribute to their coexistence. The ectomycorrhizal fungal communities are significantly different among the five forests in both Mhh and Mhg. The distinct mycorrhizal specificity between Mhh and Mhg suggests the possibility of different mycobionts triggered ecological speciation between sympatric species.
Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees
Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.
Effects of fungicide treatments on mycorrhizal communities and carbon acquisition in the mixotrophic Pyrola japonica (Ericaceae)
Pyrola japonica, a member of the family Ericaceae, is a mixotroph that grows on forest floors and obtains carbon (C) from both its photosynthesis and its mycorrhizal fungi. Its mycorrhizal community is dominated by Russulaceae. However, the mechanism of its C acquisition and its flexibility are not well understood. Our aim was to assess the impact of disturbance of the mycorrhizal fungal communities on C acquisition by P. japonica. We repeatedly applied a fungicide (Benomyl) to soils around P. japonica plants in a broad-leaved forest of central Japan, in order to disturb fungal associates near roots. After fungicide treatment, P. japonica roots were collected and subjected to barcoding by next-generation sequencing, focusing on the ITS2 region. The rate of mycorrhizal formation and α-diversity did not significantly change upon fungicide treatments. Irrespective of the treatments, Russulaceae represented more than 80% of the taxa. Leaves and seeds of the plants were analysed for C stable isotope ratios that reflect fungal C gain. Leaf and seed δC values with the fungicide treatment were significantly lower than those with the other treatments. Thus the fungicide did not affect mycorrhizal communities in the roots, but disturbed mycorrhizal fungal pathways via extraradical hyphae, and resulted in a more photosynthetic behaviour of P. japonica for leaves and seeds.
An updated LSU database and pipeline for environmental DNA identification of arbuscular mycorrhizal fungi
Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.
Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach
Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.
Inter- and intra-specific metal tolerance variation in ectomycorrhizal fungal Suillus species
Soil metal contamination can affect growth, metabolism, and reproduction of organisms, and can lead to death. However, some fungi have evolved metal tolerance and are able to live in contaminated soils. Species in the ectomycorrhizal genus Suillus from Europe and Asia display variation in metal tolerance, yet it is unknown whether this is a widespread trait in the genus and whether it occurs in North America. Here we investigate cadmium (Cd) and zinc (Zn) tolerance in S. brevipes and S. tomentosus isolates collected from sites in the Rocky Mountains of Colorado displaying different metal content. In line with previous findings for other Suillus species, we hypothesized (1) S. brevipes and S. tomentosus to display intra-specific metal tolerance variation, (2) Zn and Cd tolerance to be correlated to soil metal content, and (3) tolerant isolates to show lower metal tissue content compared to sensitive isolates (due to increased metal exclusion). We found ample intra- and inter-specific Zn and Cd tolerance variation in both S. brevipes and S. tomentosus, but no correlation between soil metal content and tolerance. There was a negative correlation between tolerance level and Zn uptake, indicating an exclusion-based Zn tolerance strategy. Sensitive and tolerant isolates showed no difference in Cd accumulation, indicating that Cd tolerance in these species is likely not dependent on exclusion. Our study sets the groundwork for further investigation into the genetic basis of Suillus metal tolerance and whether and how it impacts pine mycorrhizal partners.
Wheat dwarfing reshapes plant and fungal development in arbuscular mycorrhizal symbiosis
The introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis. We used twelve inbred genotypes derived from a diversity base broadened durum wheat Evolutionary Pre-breeding Population and genotyped with a high-throughput Single Nucleotide Polymorphism (SNP) genotyping array. In a microcosm setup segregating roots and the extra-radical mycelium, each wheat genotype was grown with or without the presence of Rhizophagus irregularis. To characterize arbuscular mycorrhizal symbiosis, we assessed hyphal density, root colonization, spore production, and plant biomass. Additionally, we split the variation of these variables due either to genotypes or to the Rht dwarfing genes alone. The fungus exhibited greater development in the roots of Dwarf plants compared to non-Dwarf plants, showing increases of 27%, 37% and 51% in root colonization, arbuscules, and vesicles, respectively. In addition, the biomass of the extra-radical fungal structures increased by around 31% in Dwarf plants. The biomass of plant roots decreased by about 43% in mycorrhizal Dwarf plants. Interestingly, extraradical hyphal production was found to be partly genetically determined with no significant effect of Rht, as for plant biomasses. In contrast, variations in root colonization, arbuscules and extraradical spore production were explained by Rht dwarfing genes. Finally, when mycorrhizal, Dwarf plants had significantly lower total P content, pointing towards a less beneficial symbiosis for the plant and increased profit for the fungus. These results highlight the effect of Rht dwarfing genes on both root and fungal development. This calls for further research into the molecular mechanisms governing these effects, as well as changes in plant physiology, and their implications for fostering arbuscular mycorrhizal symbiosis in sustainable agrosystems.
Soil compaction reversed the effect of arbuscular mycorrhizal fungi on soil hydraulic properties
Arbuscular mycorrhizal fungi (AMF) typically provide a wide range of nutritional benefits to their host plants, and their role in plant water uptake, although still controversial, is often cited as one of the hallmarks of this symbiosis. Less attention has been dedicated to other effects relating to water dynamics that the presence of AMF in soils may have. Evidence that AMF can affect soil hydraulic properties is only beginning to emerge. In one of our recent experiments with dwarf tomato plants, we serendipitously found that the arbuscular mycorrhizal fungus (Rhizophagus irregularis 'PH5') can slightly but significantly reduce water holding capacity (WHC) of the substrate (a sand-zeolite-soil mixture). This was further investigated in a subsequent experiment, but there we found exactly the opposite effect as mycorrhizal substrate retained more water than did the non-mycorrhizal substrate. Because the same substrate was used and other conditions were mostly comparable in the two experiments, we explain the contrasting results by different substrate compaction, most likely caused by different pot shapes. It seems that in compacted substrates, AMF may have no effect upon or even decrease the substrates' WHC. On the other hand, the AMF hyphae interweaving the pores of less compacted substrates may increase the capillary movement of water throughout such substrates and cause slightly more water to remain in the pores after the free water has drained. We believe that this phenomenon is worthy of mycorrhizologists' attention and merits further investigation as to the role of AMF in soil hydraulic properties.
Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum from the Red Sea
Symbioses with fungi are important and ubiquitous on dry land but underexplored in the sea. As yet only one seagrass has been shown to form a specific root-fungus symbiosis that resembles those occurring in terrestrial plants, namely the dominant long-lived Mediterranean species Posidonia oceanica (Alismatales: Posidoniaceae) forming a dark septate (DS) endophytic association with the ascomycete Posidoniomyces atricolor (Pleosporales: Aigialaceae). Using stereomicroscopy, light and scanning electron microscopy, and DNA cloning, here we describe a novel root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum (Alismatales: Cymodoceaceae) from a site in the Gulf of Aqaba in the Red Sea. Similarly to P. oceanica, the mycobiont of T. ciliatum occurs more frequently in thinner roots that engage in nutrient uptake from the seabed and forms extensive hyphal mantles composed of DS hyphae on the root surface. Contrary to P. oceanica, the mycobiont occurs on the roots with root hairs and does not colonize its host intraradically. While the cloning revealed a relatively rich spectrum of fungi, they were mostly parasites or saprobes of uncertain origin and the identity of the mycobiont thus remains unknown. Symbioses of seagrasses with fungi are probably more frequent than previously thought, but their functioning and significance are unknown. Melanin present in DS hyphae slows down their decomposition and so is true for the colonized roots. DS fungi may in this way conserve organic detritus in the seagrasses' rhizosphere, thus contributing to blue carbon sequestration in seagrass meadows.