Ascorbate: a forgotten component in the cytotoxicity of Cu(II) ATCUN peptide complexes
In 1983, Linus Pauling and colleagues reported about enhanced antitumor activity of the Cu(II) complex of the simplest ATCUN (amino terminal Cu(II) and Ni(II)-binding motif) peptide (NH-Gly-Gly-His-COOH, GGH) in the presence of ascorbate as an additive. In the following 4 decades, structural modifications of this complex were implemented, however, anticancer activity could not be significantly increased. This has led to neglecting the ATCUN motif and its Cu(II) complexes as potential chemotherapeutic agents. Furthermore, the addition of ascorbate with its positive effect on the anticancer activity has fallen into oblivion. In this work, we compared Cu(II) GGH with Cu(II) ATCUN peptides bearing β-Ala instead of Gly at the 2nd position of the peptide sequence regarding their in vitro complex stability and cytotoxicity (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and annexin V-FITC (fluorescein isothiocyanate) apoptosis assay) towards three cancer cell lines (AGS, HeLa and NCI-N87). Such an exchange of amino acids led to an up to three-fold higher cytotoxic effect in the presence of ascorbate. We thus achieved a significant increase in the otherwise moderate cytotoxicity of Cu(II) ATCUN-like complexes. Lipophilicity assays (n-octanol/water coefficient, log P values) of the studied complexes were used to evaluate differences in the antiproliferative activity.
Correction: Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function
Protoporphyrin IX iron(II) revisited. An overview of the Mössbauer spectroscopic parameters of low-spin porphyrin iron(II) complexes
Mössbauer parameters of low-spin six-coordinate [Fe(II)(Por)L] complexes (where Por is a synthetic porphyrin; L is a nitrogenous aliphatic, an aromatic base or a heterocyclic ligand, a P-bonding ligand, CO or CN) and low-spin [Fe(Por)LX] complexes (where L and X are different ligands) are reported. A known point charge calculation approach was extended to investigate how the axial ligands and the four porphyrinato-N atoms generate the observed quadrupole splittings (ΔE) for the complexes. Partial quadrupole splitting (p.q.s.) and partial chemical shifts (p.c.s.) values were derived for all the axial ligands, and porphyrins reported in the literature. The values for each porphyrin are different emphasising the importance/uniqueness of the [Fe(PPIX)] moiety, (which is ubiquitous in nature). This new analysis enabled the construction of figures relating p.c.s and p.q.s values. The relationships presented in the figures indicates that strong field ligands such as CO can, and do change the sign of the electric field gradient in the [Fe(II)(Por)L] complexes. The limiting p.q.s. value a ligand can have and still form a six-coordinate low-spin [Fe(II)(Por)L] complex is established. It is shown that the control the porphyrin ligands exert on the low-spin Fe(II) atom limits its bonding to a defined range of axial ligands; outside this range the spin state of the iron is unstable and five-coordinate high-spin complexes are favoured. Amongst many conclusions, it was found that oxygen cannot form a stable low-spin [Fe(II)(Por)L(O)] complex and that oxy-haemoglobin is best described as an [Fe(III)(Por)L(O)] complex, the iron is ferric bound to the superoxide molecule.
Development and validation of an ICP-MS method and its application in assessing heavy metals in whole blood samples among occupationally exposed lead smelting plant workers
Occupational exposure to heavy metals affects various organ systems and poses a significant health risk to workers. Consequently, its precise estimation is of clinical concern and warrants the need for an analytical method with reliable precision and accuracy. The current study aimed to develop an analytical method using inductively coupled plasma‒mass spectrometry (ICP-MS) to detect trace to elevated levels of potentially toxic elements in human blood. The sample preparation was optimized using a two-step ramp temperature microwave acid digestion program. The toxic elements were quantified using ICP-MS operating in kinetic energy discrimination (KED) mode, adjusting the data acquisition parameters and instrumental settings. The analytical method was validated using standard performance parameters. Each validation parameter was aligned with the acceptable criteria outlined in standard guidelines. The method achieved optimal linearity (r > 0.99), recovery (85.60-112.00%), and precision (1.35-7.03%), was capable of detecting the lowest concentrations of 0.32, 0.28, 0.28, and 0.19 µg/L, and was capable of quantifying trace levels of 1.01, 0.88, 0.90, and 0.62 µg/L for arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb), respectively. Post-validation, the method was applied to estimate heavy metals in blood samples from 250 Pb-smelting plant workers, revealing potential health implications of occupational exposure. The cohort analysis revealed that demographic and employment factors were associated with elevated blood Pb levels, leading to symptoms and health risks. Clinical analysis revealed that 33.6% of the participants experienced hypertension. These findings highlight the significant health risks associated with elevated blood Pb levels. The weak but significant correlation with systolic blood pressure underscores the need for improved monitoring and workplace safety. This emphasizes the importance of continuous monitoring, targeted interventions, and enhanced occupational hygiene to protect workers' well-being.
Rapid method for screening of both calcium and magnesium chelation with comparison of 21 known metal chelators
Chelation is the rational treatment modality in metal overload conditions, but chelators are often non-selective and can, hence, cause an imbalance in the homeostasis of physiological metals including calcium and magnesium. The aim of this study was to develop an affordable, rapid but sensitive and precise method for determining the degree of chelation of calcium and magnesium ions and to employ this method for comparison on a panel of known metal chelators. Spectrophotometric method using o-cresolphthalein complexone (o-CC) was developed and its biological relevance was confirmed in human platelets by impedance aggregometry. The lowest detectable concentration of calcium and magnesium ions by o-CC was 2.5 μM and 2 μM, respectively. The indicator was stable for at least 110 days. Four and seven out of twenty-one chelators strongly chelated calcium and magnesium ions, respectively. Importantly, the chelation effect of clinically used chelators was not negligible. Structure-activity relationships for eight quinolin-8-ols showed improvements in chelation particularly in the cases of dihalogen substitution, and a negative linear relationship between pKa and magnesium chelation was observed. Calcium chelation led to inhibition of platelet aggregation in concentrations corresponding to the complex formation. A novel method for screening of efficacy and safety of calcium and magnesium ion chelation was developed and validated.
Electron transfer in biological systems
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Influence of divalent metal cations on α-lactalbumin fibril formation
The effect of binding of divalent metal cations (Ca, Cu, Mg, Mn, Zn) on the kinetics of fibril formation of bovine α-lactalbumin at acidic conditions is considered. The kinetic parameters of the process were determined using a thioflavin T fluorescence assay. The DSC thermograms of bovine α-lactalbumin in the presence and absence of cations were recorded. The duration of the lag period correlates with the changes in the thermal stability of the molten globule of the protein in the presence of cations. The final thioflavin T fluorescence intensity after formation of the mature fibrils decreases under the influence of calcium ions which strongly bind to the monomeric protein, and increases in solutions containing copper and especially zinc. These ions seem to accelerate secondary nucleation processes and change the fibril morphology, which was confirmed by atomic force microscopy imaging.
Analyzing the FMN-heme interdomain docking interactions in neuronal and inducible NOS isoforms by pulsed EPR experiments and conformational distribution modeling
Nitric oxide synthases (NOSs), a family of flavo-hemoproteins with relatively rigid domains linked by flexible regions, require optimal FMN domain docking to the heme domain for efficient interdomain electron transfer (IET). To probe the FMN-heme interdomain docking, the magnetic dipole interactions between the FMN semiquinone radical (FMNH) and the low-spin ferric heme centers in oxygenase/FMN (oxyFMN) constructs of neuronal and inducible NOS (nNOS and iNOS, respectively) were measured using the relaxation-induced dipolar modulation enhancement (RIDME) technique. The FMNH RIDME data were analyzed using the mesoscale Monte Carlo calculations of conformational distributions of NOS, which were improved to account for the native degrees of freedom of the amino acid residues constituting the flexible interdomain tethers. This combined computational and experimental analysis allowed for the estimation of the stabilization energies and populations of the docking complexes of calmodulin (CaM) and the FMN domain with the heme domain. Moreover, combining the five-pulse and scaled four-pulse RIDME data into a single trace has significantly reduced the uncertainty in the estimated docking probabilities. The obtained FMN-heme domain docking energies for nNOS and iNOS were similar (-3.8 kcal/mol), in agreement with the high degree of conservation of the FMN-heme domain docking interface between the NOS isoforms. In spite of the similar energetics, the FMN-heme domain docking probabilities in nNOS and iNOS oxyFMN were noticeably different (~ 0.19 and 0.23, respectively), likely due to differences in the lengths of the FMN-heme interdomain tethers and the docking interface topographies. The analysis based on the IET theory and RIDME experiments indicates that the variations in conformational dynamics may account for half of the difference in the FMN-heme IET rates between the two NOS isoforms.
Antibacterial activity of Au(I), Pt(II), and Ir(III) biotin conjugates prepared by the iClick reaction: influence of the metal coordination sphere on the biological activity
A series of biotin-functionalized transition metal complexes was prepared by iClick reaction from the corresponding azido complexes with a novel alkyne-functionalized biotin derivative ([Au(triazolato)(PPh)], [Pt(dpb)(triazolato)], [Pt(triazolato)(terpy)]PF, and [Ir(ppy)(triazolato)(terpy)]PF with dpb = 1,3-di(2-pyridyl)benzene, ppy = 2-phenylpyridine, and terpy = 2,2':6',2''-terpyridine and R = CH, R' = biotin). The complexes were compared to reference compounds lacking the biotin moiety. The binding affinity toward avidin and streptavidin was evaluated with the HABA assay as well as isothermal titration calorimetry (ITC). All compounds exhibit the same binding stoichiometry of complex-to-avidin of 4:1, but the ITC results show that the octahedral Ir(III) compound exhibits a higher binding affinity than the square-planar Pt(II) complex. The antibacterial activity of the compounds was evaluated on a series of Gram-negative and Gram-positive bacterial strains. In particular, the neutral Au(I) and Pt(II) complexes showed significant antibacterial activity against Staphylococcus aureus and Enterococcus faecium at very low micromolar concentrations. The cytotoxicity against a range of eukaryotic cell lines was studied and revealed that the octahedral Ir(III) complex was non-toxic, while the square-planar Pt(II) and linear Au(I) complexes displayed non-selective micromolar activity.
Understanding the role of negative charge in the scaffold of an artificial enzyme for CO hydrogenation on catalysis
We have approached the construction of an artificial enzyme by employing a robust protein scaffold, lactococcal multidrug resistance regulator, LmrR, providing a structured secondary and outer coordination spheres around a molecular rhodium complex, [Rh(PNP)]. Previously, we demonstrated a 2-3 fold increase in activity for one Rh-LmrR construct by introducing positive charge in the secondary coordination sphere. In this study, a series of variants was made through site-directed mutagenesis where the negative charge is located in the secondary sphere or outer coordination sphere, with additional variants made with increasingly negative charge in the outer coordination sphere while keeping a positive charge in the secondary sphere. Placing a negative charge in the secondary or outer coordination sphere demonstrates decreased activity by a factor of two compared to the wild-type Rh-LmrR. Interestingly, addition of positive charge in the secondary sphere, with the negatively charged outer coordination sphere restores activity. Vibrational and NMR spectroscopy suggest minimal changes to the electronic density at the rhodium center, regardless of inclusion of a negative or positive charge in the secondary sphere, suggesting another mechanism is impacting catalytic activity, explored in the discussion.
Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function
Infections caused by the airborne fungal pathogen, Aspergillus fumigatus, are increasing in severity due to growing numbers of immunocompromised individuals and the increasing incidence of antifungal drug resistance, exacerbating treatment challenges. Gallium has proven to be a strong candidate in the fight against microbial pathogens due to its iron-mimicking capability and substitution of Ga(III) in place of Fe(III), disrupting iron-dependent pathways. Since the antimicrobial properties of 2,2'-bipyridine and derivatives have been previously reported, we assessed the in vitro activity and proteomic effects of a recently reported heteroleptic Ga(III) polypyridyl catecholate compound against A. fumigatus. This compound has demonstrated promising growth-inhibition and impact on the A. fumigatus proteome compared to untreated controls. Proteins associated with DNA replication and repair mechanisms along with lipid metabolism and the oxidative stress responses were elevated in abundance compared to control. Crucially, a large number of mitochondrial proteins were reduced in abundance. Respiration is an important source of energy to fuel metabolic processes required for growth, survival and virulence, the disruption of which may be a viable strategy for the treatment of microbial infections.
Organoselenium transition metal complexes as promising candidates in medicine area
The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.
Design, synthesis, and biological evaluation of novel halogenated chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes as anticancer agents
Iron(III) complexes based on N,N´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (X1), chlorine (X2) and bromine (X3) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.
The first evaluation of the in vitro effects of silver(I)-N-heterocyclic carbene complexes on Encephalitozoon intestinalis and Leishmania major promastigotes
Encephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.
An organometallic hybrid antibiotic of metronidazole with a Gold(I) N-Heterocyclic Carbene overcomes metronidazole resistance in Clostridioides difficile
Antimicrobial resistance (AMR) has been emerging as a major global health threat and calls for the development of novel drug candidates. Metal complexes have been demonstrating high efficiency as antibacterial agents that differ substantially from the established types of antibiotics in their chemical structures and their mechanism of action. One strategy to exploit this potential is the design of metal-based hybrid organometallics that consist of an established antibiotic and a metal-based warhead that contributes an additional mechanism of action different from that of the parent antibiotic. In this communication, we describe the organometallic hybrid antibiotic 2c, in which the drug metronidazole is connected to a gold(I) N-heterocyclic carbene warhead that inhibits bacterial thioredoxin reductase (TrxR). Metronidazole can be used for the treatment with the obligatory anaerobic pathogen Clostridioides difficile (C. difficile), however, resistance to the drug hampers its clinical success. The gold organometallic conjugate 2c was an efficient inhibitor of TrxR and it was inactive or showed only minor effects against eucaryotic cells and bacteria grown under aerobic conditions. In contrast, a strong antibacterial effect was observed against both metronidazole-sensitive and -resistant strains of C. difficile. This report presents a proof-of-concept that the design of metal-based hybrid antibiotics can be a viable approach to efficiently tackle AMR.
Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR)
The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.
Indium(III) complexes with lapachol: cytotoxic effects against human breast tumor cells and interactions with DNA
Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl].4HO (1), [In(lap)Cl(EtN)] (2), [In(lap)]·2HO (3) [In(lap)(bipy)Cl] bipy = 2,2'-bipyridine (4) and [In(lap)(phen)Cl] phen = 1,10-phenanthroline (5) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (4) and (5) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2'-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (4) and (5) interacted with CT-DNA in vitro by an intercalative mode, only 5 exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (5) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (5) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (5) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (5) are of utmost relevance.
Selective removal of copper from complex biological media with an agarose-immobilized high-affinity PSP ligand
The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.
Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study
In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with β-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains Mucor mucedo and Penicillium italicum complex 2B showed five times better activity compared to ketoconazole, while complex 2D had two times better activity on Penicillium italicum strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with β-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.
Catalytic role of histidine-114 in the hydrolytic dehalogenation of chlorothalonil by Pseudomonas sp. CTN-3
Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile; TPN) is an environmentally persistent fungicide that sees heavy use in the USA and is highly toxic to aquatic species and birds, as well as a probable human carcinogen. The chlorothalonil dehalogenase from Pseudomonas sp. CTN-3 (Chd, UniProtKB C9EBR5) degrades TPN to its less toxic 4-OH-TPN analog making it an exciting candidate for the development of a bioremediation process for TPN; however, little is currently known about its catalytic mechanism. Therefore, an active site residue histidine-114 (His114) which forms a hydrogen bond with the Zn(II)-bound water/hydroxide and has been suggested to be the active site acid/base, was substituted by an Ala residue. Surprisingly, Chd exhibited catalytic activity with a k value of 1.07 s, ~ 5% of wild-type (WT) Chd, and a K of 32 µM. Thus, His114 is catalytically important but not essential. The electronic and structural aspects of the WT Chd and Chd active sites were examined using UV-Vis and EPR spectroscopy on the catalytically competent Co(II)-substituted enzyme as well as all-atomistic molecular dynamics (MD) simulations. Combination of these data suggest His114 can quickly and reversibly move nearly 2 Å between one conformation that facilitates catalysis and another that enables product egress and active site recharge. In light of experimental and computational data on Chd, Asn216 appears to play a role in substrate binding and preorganization of the transition-state while Asp116 likely facilitates the deprotonation of the Zn(II)-bound water in the absence of His114. Based on these data, an updated proposed catalytic mechanism for Chd is presented.
An N-terminal acidic β-sheet domain is responsible for the metal-accumulation properties of amyloid-β protofibrils: a molecular dynamics study
The influence of metal ions on the structure of amyloid- (Aβ) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aβ aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aβ sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when β-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the β-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aβ variants shows that the AD-causative D7N mutation promotes the formation of N-terminal β-sheets and accumulates more Zn, in contrast to the non-amyloidogenic rodent sequence that hinders the β-sheets and is more selective for Na over Zn cations. It is proposed that forming an acidic β-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aβ fibrils to their high content of β-sheet structure at the N-terminal sequence.